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ABSTRACT

High energy laser weapons have been evolving progressively in recent years. These
weapons deliver high-intensity beams to a target and can instantly destroy or burn it.
They may cause potential threats to Navy ships, computer networks, guided missiles, and
satellites in orbit. In order to reduce our military’s vulnerability to high energy laser
weapons, one possible countermeasure is to rotate or rock the object itself when it is hit

by the laser beam.

The main purpose of this thesis is to investigate the relationship between the
speed of a rotating/dithering laser beam and the maximum temperature rise induced by
the laser beam on a finite solid. We have investigated extensively the numerical
solutions for the transient temperature rise in both one-dimensional (1-D) and two-
dimensional (2-D) finite solids due to rotating/dithering laser beams. Our mathematical
approaches include the eigenfunction expansion method, the Crank-Nicolson method, the
Fast Fourier Transform method, and COMSOL for 1-D and 2-D cases. We have
employed COMSOL to solve the 3-D nonhomogeneous heat equation.

This thesis provides the first study that we know of on the effect of
rotating/dithering laser beams on a finite target. Our results are consistent with previous
analytical studies on semi-infinite regions. The quantitative relationship between
maximum temperature rise and laser beam rotating speed, which is presented in this
thesis, can be used as a general guide for adjusting the speed of rotation of the target in
order to prevent the maximum temperature rise from reaching the melting point of the

target.
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l. INTRODUCTION

Laser-induced heating has been widely studied [1, 2, 3, 4]. Most of these studies
are restricted to a moving/scanning laser beam.  Recently, the effect of a
rotating/dithering laser beam on the temperature rise of a semi-infinite domain has been
studied [5]. However, in many realistic problems the geometry of an object is finite. So,
in this thesis, we extend the previous studies to a finite domain and pinpoint the effect of

a rotating/dithering laser beam on the temperature rise of a finite object.

The laser beam can be considered as a moving disc heat source with a Gaussian
distribution of heat intensity. The analytical solutions can be used to determine the
temperature rise distribution in and around the laser beam heat source on the work
surface as well as with respect to depth at all domains close to the heat source. The
analytical and numerical solutions from mathematical approaches provide a better
appreciation of the physical relationships between the relevant laser parameters and the
thermal properties of the work piece.

The main purpose of this thesis is to investigate the relationship between the
rotating/dithering laser beam speed and the maximum temperature rise induced by the
laser beam on a finite solid. In Chapters Il and Ill, we present the analytical and
numerical methods for obtaining a transient temperature distribution with various
methods, which include the eigenfunction expansion method, the Crank-Nicolson method
and the Fast Fourier Transform method (FFT). In Chapters 11l and IV, numerical
solutions for one-dimensional (1-D) and two-dimensional (2-D) nonhomogeneous heat
equations from MATALB and COMSOL are given. We compare different methods and
investigate the relative errors of numerical solutions obtained in MATLAB and
COMSOL. In Chapter V, we have employed COMSOL to solve the three-dimensional
(3-D) problem.

The objective of this thesis is to provide insights on developing objects of
adequate rotating speed against direct energy weapons (DEWSs). The simulation results,

especially the quantitative relationship between maximum temperature rise and

1



rotating/dithering speed, can be used as a blueprint to adjust the speed of rotation of the
target against DEWSs to prevent the temperature rise from reaching the melting point of
the target.



Il.  ANALYTICAL SOLUTION FOR A TRANSIENT
TEMPERATURE DISTRIBUTION DUE TO A ROTATING OR
DITHERING LASER BEAM IN A FINITE SOLID: EIGEN-
FUNCTION EXPANSION METHOD

Consider a laser beam source used to heat a 1-D finite rod. A 1-D heat equation

can be written as [1]

w_,
ot ox?

X gxt)  O<x<L, (Eq. 2.1)

T

where u(x,t) is the temperature rise with respect to the ambient temperature, q(x,t) is

2
: e . m

the heat source created by laser beam, «; is the thermal diffusivity with units {—} and
S

K, is the thermal conductivity with units[ik}.
m-

Two assumptions are made in this analytical approach. First, heat losses by
radiation are negligible as compared to the intensity of the incident laser beam. Second,

thermal properties, such as thermal conductivity K, and thermal diffusivity o, , are

considered constant and evaluated at an average temperature. The second assumption

makes this heat equation a linear problem.

For this 1-D rod, we impose insulating boundary conditions (BCs)

Z—U(O,t):Z—u(Lx,t):O, which assumes that no energy escapes into the air at the
X X

air/material interface. This is a good approximation for most materials under
consideration, as heat flow by conduction through the material far exceeds the heat loss
by radiation or convection at the air/material interface.

The initial condition (IC) is u(x,0) =0, which reflects the fact that there is no

temperature rise with respect to the ambient temperature before the laser hits the rod.



The heat source 0(X,t)is considered as a laser beam of temporal continuous wave

(CW) and spatially modeled by a Gaussian distribution, which corresponds to the
theoretical TEMy, mode of the laser. The term TEM comes from the acronym

“transverse electromagnetic mode.” The subscript of TEM specifies the number of nodes
generated by a slight misalignment of the mirrors located in the laser cavity [1, 6]. Figure

1 shows some transverse modes and the simplest modes, TEMy, is used in this thesis;

the heat source generated by the laser beam is a Gaussian distribution.

Moo -
TEM01

Node

Node

Node

10

TEM

TEM,
Figure 1.  Different transversal modes in a laser spot [From 1]

For a dithering laser beam in TEMy, mode, the heat source q(x,t) can be written

as

_ K xex ()2
fo? (=% (1) . 27t L,
,xc(t)=x0+asmT, X, ==

q(x,t) = 1€ >



Here, x_(t)is the position of the dithering Gaussian beam and x, is the initial
position of the laser beam. In the above formula, the center point of the rod is picked. r,
is the effective radius of the laser beam. 1, is the intensity of the laser beam at the center

of the heat spot after it is absorbed by the material. k is a constant used for the Gaussian

model [2]. Figure 2 depicts a dithering laser beam shining on a 1-D rod.

- (e x (0)?
Dithering Laser Beam q(x,t) =1, °

\4 v \4
O Lx_a LX Lx+a L
2 2 2 X
@t=£ @t=0 @tzTZ

Figure 2.  Dithering laser beam on a 1-D rod

We will apply the eignefunction expansion method to solve this 1-D heat equation.
Generally speaking, the method of eigenfunction expansions consists of building up the
solution of a boundary value problem as a sum of eigenfunctions of a Helmholtz problem.
To begin with, consider a simple 1-D mathematical model in the Cartesian coordinate for
solving the linear and homogeneous heat equation with initial conditions (ICs) and

boundary Conditions (BCs) described above where no heat source q(x,t) is involved, the

1-D heat equation becomes:



To make the derivation process simpler, setay =1. The method of separation of

variables (SOV) is applied in solving this homogeneous heat equation [1]. We will move
on to a nonhomogeneous solution with heat source q(x,t) by applying the method of
eigenfunction expansion.

It is intuitional that the temperature u is a function of position and time,
therefore U =u(X,t). In the method of SOV, we attempt to determine solutions in the

product form,
u(x,t)=X(x)T(t) (Eq. 2.2)

where X (X) is a function of space Xalone and T(t) is a function of time t alone. This

SOV reduces a partial differential equation (PDE) to several ordinary differential

equations (ODEs).

For a heat equation without heat source:

% = V2u(x,t) (Eq. 2.3)

We substitute the assumed product form of Eq. 2.2 into this heat equation and get
X()T (1) = X "(x)T (1)

We can actually “separate variables” by dividing both sides of this equation by
X (X)T (t) to obtain
X"

A Eq. 2.4
= (Eq. 2.4)

Now the variables have been “separated” in the sense that the left-hand side of the
equation is only a function of timet and the right-hand side function is a function of
space x. Since the variables t and x are independent of each other, the only way to get

equality is to have the functions on both sides of (Eq. 2.4) constant and equal. Thus,

r'_X__,
T X



where A is an arbitrary constant called the separation constant. Later we will explain
why this separation constant is a negative value with 2>0. Since we treat the laser beam
as a heat source, and there is no heat source involved yet in solving the homogeneous
equation, it is intuitive that the temperature decreases as a function of time, so

L(t)——ﬂb<0

T = (Eq. 2.5)

(Eq. 2.5) is a first-order linear homogeneous differential equation with constant

coefficient. This ODE can be solved directly by seeking exponential solutions, T = ert .

By substitution, the characteristic polynomial is r =—A. Therefore, the general solution
of (Eq. 2.5) is

T()= ce At (Eq. 2.6)

Where Cis an arbitrary constant. The time-dependent solution is a simple
exponential. Recall that A is the separation constant, which for the moment is arbitrary;
however, eventually we will find out that only certain values of A are allowable.
If A >0, the solution exponentially decays as t increases because of the negative sign;
if 4 <0, the solution exponentially increases; if A =0, the solution remains constant in
time. Therefore, A > 0 gives a reasonable solution since temperature decreases as time

goes by.
Our next move is to consider the right-hand side of (Eq. 2.4):

%:—1 (1>0) (Eq. 2.7)

This is a second-order, constant coefficient homogeneous ODE, substituting

X (x) = e"™ into (Eq. 2.7) yields the characteristic equation r242=0.



Since A >0, exponential solutions have imaginary exponents, X (X) =e*“*. In
this case, the solution oscillates. Recalling Euler’s formula, el — cos(#) +isin(H), so
the choices COS(\/ZX) and sin (\/ZX) are made to get the desired real number solutions.
The general solution for (Eq. 2.7) is:

X (X) = Acos(v/Ax) + Bsin(vAX) (Eqg. 2.8)

This is an arbitrary linear combination of two independent solutions where A and
B are just arbitrary constants.

Both ends of the 1-D rod are insulated; the BCs on x direction states:

ou ou
— =0 and —- =0
X |x=0 OX |x=Ly
This is equivalent to
X'(0)=0 and X'(L)=0 (BCs)

The derivative of (Eq. 2.8) is
X '(X) = —AJA sin(vAX) + By cos(+/AX) (Eq. 2.9)

We can plug the first BC X'(0)=0 into (Eq. 2.9) to obtain the solution
X'(0) = 0 which implies that B=0. So X (x) is a function of cosine only since the sine

term vanishes. Another BC implies that Asin(+/AL,)=0. To avoid the trivial

solution X (0)=0, we take A=1, which forces sin(~AL,)=0. Since the sin

function vanishes at the integer multiples of 7, we conclude that
V2 =2 =r|‘_—”, n=0,4142,.......

and so



X =X, (x) :cos(%), n=0,12,.......

Note that for negative values of n, we obtain the same solution; hence, solutions

corresponding to negative n's may be discarded without loss. These X, (x) are from the

eigenfunction of the 1-D heat equation. We now go back to (Eq. 2.6) and substitute

2

nz
A=|— toget
(LX} g

T,()=c.e

Now we return to (Eg. 2.1). We solve this problem using the method of
eigenfunction expansion, and hence start by assuming that u has an expansion in terms of

the eigenfunctions X (x). Thus,

NzX
u(x,t) = ;un (t) COS(L—X) (Eq. 2.10)

~
eigenfunction expansion

where the coefficients u, (t) are functions of t. We now expand q as
q(x,t) =2 a,t)X,(x) (Eq. 2.11)
n

After substituting (Eg. 2.10) and (Eq. 2.11) into the 1-D inhomogeneous heat
equation (Eq. 2.1), we obtain

X

>u '(t)xn(x>aTZun(t)H”L—”] }xn(xn%zqna)xn(x).

This yields the differential equation of the coefficients u, (t),

U, ') = H”L—”] ]un(t) 2,0 (Eq. 2.12)



The initial condition for this equation is u, (t=0)=0.
Now the problem is to find q,(t). We can use the property of orthogonality of

eigenfunctions. By multiplying eigenfunction X, (x) which is COS(%) and then

X

integrating on both sides of Eq. 2.11, we get

LX

[ a0 X, 0dx = | 3 0,0)X, (- X, (ddx =g, @) X, (x)dx

2nzX

L, 1+cos( i ) L
=0,(0)| ———=—dx=0,() >
0

L PR 0);

2 2 5 Nz X
Therefore, d,(t) = L_x I[ q(x,t) X, (x)dx = T I e COS(L—)dX

X 0 X

To obtain g, (t) is very expansive because the x— x_(t) term makes the integration

time-dependent. Here we use change of variables to make this calculation easier,

X =x—x(t)
dx =dx
thus,
LX) _kg2 B B
,0=> | 1e* cos(E (x+x 1)
Lx =X (1) Lx

We introduce a constant d , which is the effective radius of the laser beam, and

k ~2
——X

d is about 3 to 5 times of the standard deviation & of | " Instead of taking integral
from >~<=—xc(t) to L,—x.(t) , using the assumption above to change the integral

fromx=—d to x=d, since the laser beam is a very concentrated Gaussian distribution,
so taking integral with respect to a large range is unnecessary; we only need to integrate
within the effective laser range which is from —d to d. Figure 3 shows the effective

radius of the laser beam.
10



—d 0 d X

Figure 3.  Effective radius of laser beam, d as a multiple of standard deviation &

We also recall that the trigonometry formula of cosine in sum and difference

formula,
cos(u £ V) = cos(u) cos(v) Fsin(u)sin(v)

then g, (t) becomes

W o7 7, (1)
qn(t)—L—(jle cos(" )d} )

—{J' I eTX sm(—)d x}s n(nﬁx (t))

The integral in the second term is zero since the integrand function is an odd

function and the integration interval is[—d, d]. Thus, q,(t) simplifies to

x—d x X

W o7 7, (1)
qn(t)——{jle cos(" )d} )

Once q,(t) is found, we have to compute u,(t) using the method of integrating
factor.

Recall the method of integrating factor in solving first-order ODE:

11



y'()+a-y(t)=r(t)
Here a is a constant and r(t) is a function of time. The first step of integrating

t

factor is to multiply e@l on both sides of this equation:

e [y'()+a-yt)]=ed r(t)
This equation is equivalent to

d

o [eat : y(t)} el r(1)

We can integrate on both sides of the equation and get
t
el yt) = y(0)+ [ .r(s) ds
t=0

at

where s is a dummy variable. We multiply € " to obtain

y(t) = y(0)-e~al L gaL, | el . r(t) dt

Now, we can compute U_(t) of Eq. 2.12 use the integrating factor method to get

u, (1) = ay H”L—”] }un(m T, (1)

X KT

= j—t eaT[Lx] tun(t) = eaT[LTjt ETT q, ()

= eaT[Krj tun(t) = jeaT[m il q,(s)ds
0 KT

= u,(t) = e_aT[L*] . JzeaT[L*] s i—:qn(s)ds

12



where the initial conditionu, (0) has been applied.

: : n
Once u, (t) is calculated, we can find u(x,t) = Zun(t)xn(x) = Zun(t)cos(LLX)

n n X
After we conduct several experiments in MATLAB, we find that the direct
summation is very slow; the computational cost of this eigenfunction expansion method
is extremely high in a 3-D nonhomogeneous heat equation problem. An alternative way
to compute the series is to take advantage of the Fast Fourier Transform (FFT). In order

to do so, we first change the cosine form to a combination of exponential forms.

inﬂX inﬂX

nrx, e~ +e -
cos( )=
L 2

X

Then we even extend u(x,t) from the domain (O,L,) to (-L,,0) and make it

periodic with period 2L, . Figure 4 shows how to expand the domain in FFT method.

L, 0 L

N /
e

One Period

X

Figure 4.  Domain expansion: cosine expansion to FFT

13



So, we rewrite U as

- elT* + e_‘LT
u(x,t)=>"u, () B —
n=0
w (X un—(t), n=0
= > ¢, (t)-e = where c (t)= ,
N=-—o0 ufn( ) , n<0
2

and then we apply FFT. We will provide more details on how to compute the solution
with FFT in Chapter III.

14



I11. NUMERICAL SOLUTION FOR A TRANSIENT, ONE-
DIMENSIONAL TEMPERATURE DISTRIBUTION IN A FINITE
ROD DUE TO A DITHERING LASER BEAM

In this section, we review some numerical methods for solving the 1-D

nonhomogeneous heat equation.
A. THE CRANK-NICOLSON METHOD

The Crank-Nicolson method is an implicit, unconditionally stable numerical
method used to solve the heat equation. It is second-order accurate in time and second-
order accurate in space. In 1947, Crank and Nicolson suggested an alternative way to
utilize centered differences scheme [7]. To illustrate the Crank-Nicolson scheme, we

start with centered difference and return to the Taylor series expansion for f (x, + Ax)and

f(x, —AX).
f(X+AX) = f(x)+ f '(x) + (&%) ) f"(x)+ (&) ) fOX) +... (Eq. 3.1)
f(x— Ax)_f(x)— f(x) (&) ) f"(x)- (&) ) fOX) +... (Eq. 3.2)

Subtracting (Eg. 3.1) from (Eq. 3.2) yields
f(X+AX) — f (X—AX) = 2Ax f '(x)+%(Ax)3 FOX) +...

We can get f '(x) by reorganizing this equation

f(x+Ax)-f(x-Ax) 1 2 £ (3
o 6(Ax) f O (x) +...

=0(Ax)?

f'(x) =

This leads to the first-order centered difference approximation

f (X+Ax)— f (Xx—AXx)
2AX

f'(x) =~

15



This approximation is with truncation error O(Ax)*, an order of (Ax)2 and the

approximation is accurate and consistent; the truncation error vanishes asAx — 0.

By adding Eqg. 3.1 and Eq. 3.2, we have
f(Xx+AX)+ f(x=Ax) =21 (X)+(AX)* T "(X) +%(Ax)4 fOX) +...
Again, we can get the second-order derivative f "(x) by reorganizing this equation

Fx+Ax)—2F () + f(x=ax) (Ax)’
(AX)? 12

f(x) = FO(x)+..

0(Ax)?
and this leads to the second-order centered difference approximation

_F(x+Ax) =21 (x) + f (X AX)
) (Ax)’

f(x)

After we understand the second-order difference approximation, we can move on
to the Crank-Nicolson scheme. The forward difference in time of temperature

T =T(x,t) can be written as:

T _Tt+A)-T()
ot At

The Crank-Nicolson method may be interpreted as the centered difference

around t+%. The error in approximating %—I(H%) is O(At)?[7]. Thus, we discretize

the second derivative at t+%with a centered difference scheme. Since this involves

functions evaluated at this in-between time, we take the average att and t+At. This

2
yields the Crank-Nicolson scheme for 1-D homogeneous heat equation%r =0 Z_-Iz-
X
T s T = 2T 4T ¥ T — 214+ (Eq.3.3)

At 2 AX? AX?

16



We introduce the shorthand notation T(x,,t ) =T, which is a matrix notation

used to discretize x and t, because the Crank-Nicolson scheme involves six stencil
points rather than a simpler stable method, and three of which are at the advanced time,

as shown in Figure 5. We cannot directly march forward in time. Instead, we are left
with a traditional system of equations of the form AX =b , where X is the solution at the
(k +1) st time level and b depends on the solution at the k-th time level. Of course, it is

not just any A, the matrix we have has a very special structure which is to be shown later.

t+ At ¢ ¢ ®
t ® ® ®
X —AX X X+ AX

Figure 5. Implicit Crank-Nicolson scheme [From 7].

Now consider a 1-D nonhomogeneous heat equation with a heat source f (x,t):

2
T_ 9T t(xt) ,0sxsl
ot ox

The BCs are insulated at both ends of the rod:

ar
154

_ar

= OX

x=1

The IC assumes that there is no temperature rise with respect to the ambient

temperature:

T(x,0)=0

17



In this thesis, we study the case where the heat source is a dithering 1-D Gaussian beam:

= (x=x (1))

f(x,t)=1,.e ™ L

. 2nt
X (t) =X, +asin—, X, =—2>
()= +asin=—=, x ==

where |, is the intensity of the laser beam. As before, we discretize this 1-D rod into n

parts, as depicted in Figure 6:

T,-T; T_T

Figure 6.  Discretization of the 1-D rod

Here in the Crank-Nicolson scheme and later in the matrix notation, the BCs are

extended into ghost grid pointsx , and x.,,. However, in this finite difference method,

the BCs link temperature at x , to the temperature at x, and the temperature at x,, to the

temperature at x. . More specifically, the BCs are

ﬂ NT(XUtk)_T(X—l’tk)_

0 v 0=>T =TY

oT T(X,0t)—T(X,t

—| = 1) =T k):O:>Tnk+1:Tnk for all k >1
ox ' AX

Applying the Crank-Nicolson scheme to the heat equation with a heat
source f (x,t), we obtain

Tik+l_Tik _a Titl_ZTik‘FTiEl TiEII_ZTikH"'TikIl} 1

+ +={f(x,t)+ f(x,t
At 2 AX? AX? 2[ (I k) (| k+1)]

18



i=12,.n-1n K=0,12,..... t, =KAt

Here, {T}are known, {T"*} areto be found. We start with a simple case i=1and
rearrange this equation:

K+ Kk aAt| T k T k +T7k Tk+l —T k+1 +T7k+l A
T =T+ 2 [ : A;2 L2 A;(z 1 +?[f(x1,tk)+ f (%, te)]
where T =T and T =T, because of the BCs. After changing some orders, we put

T.“**on the left-hand side of the equation and T on the right-hand side; we get

g oAt 4 aAt
le 1 _ - Tzk 1 + -
2AX 2AX

. a/At al\t At
le ! =le + AR Tzk — AR le +?[ f(x,t)+f (X1’tk+1)]

To simplify, we get

aAt _ . aAt _ . alAt _ aAt _, At
1+ T |- T, 7 =|1- T |+ T, +—| f(x,t)+ f(x,t.,)|(Eq.1
( IAC ] AC 2 ( DA 1) A 2 2[ (X, 1)+ F(x kl)]( q )

To put this in matrix form, we get

at a/\t le+l
l+ 2 B 2 x k+1
28X 28" ho [T, 2
alAt oAt Tk At
=|1- 1 +—[f(x,t)+ f(x,t
|: ZAXZ 2AX2:|1X2X|:T2k:|2X1 2[ (Xl k) (Xl k+1)]

Likewise, when i =2

T2k+l _T2k ~ g|:'|'3k _ 2T2k +le . T3k+l _ 2T2k+1 +T1k+1 j| 1
At 2

- v o +E[ f (. t)+ (% t.)]

After changing some orders, we put T,***on the left-hand side of the equation and
T.on the right-hand side

19



A Tk+1+(1+ﬂ2-r2k+1j_ oAt Tho

20¢ ! 20¢ 0
(Ea2)
oAt oAt oAt At
= N le +(1 AL JTzk + N Tsk +E[ f (X21tk)+ f (Xzitk+1)]
In matrix form,
T k+1
1
{_ aAt2 Ly aA: ~ aAtz } | T
2AX AX 2AX" |4 Tk
3 3x1
T

aAt aAt oAt At
{ZAXZ _sz ZAXZ:IMX T{ +?[f(X2’tk)+f(X2’tk+l)]

3 lza

When i=n-1

2 AX? AX?

kel Tk kK _oTk k kel ksl k+1
Tn—l AtTn_l _ 623 {Tn 2Tn—1 +Tn_2 n Tn 2Tn—1 +Tn_2 +%[ f (Xn—l’tk) + f (Xn—lltk+l)]

Once again, we put T.“"*on the left-hand side of the equation and T“on the right

hand side
N . oN_ ) oA .
_ZAXZTr:(—Zl (li sz-rr:(—llj 2AX2-I-nkl
at ot o, A (Ban-y
k k k
Vi {1 AXZ)TM SR LICPARS (W)
In matrix form
Tk+l
n-2
[_ aAt2 Lt aA;[ ~ aAtz} o T
2AX AX 2AX i Tk
n 3x1

k

n-2
aAt aAt oAt K At
= 1- x| T +—| F(X, )+ F(X, 0t
[ZAXZ AX? ZflizL 2 [ ( n-1 k) ( n-1 kl)]

n 3

20



Finally, when i=n

k+1 k k k k k+1 k+1 k+1
I _a T, —2T, +Tn_1+Tn+1 =21, +T.

n+1

At 2 AX? AX?

+%[ f (Xn’tk)+ f(Xn'tk+l)]

Here, T, =T  and T}' =T " because of the BCs.

n+1

Putting T.*""on the left hand side of the equation and T*on the right-hand side

leads to

oAl iy ,ONkﬂ_ﬂk oA ké
ZszTn—l +(1' ZszTn j_ZszTn—l_i{l Zszan +2[f(xn’tk)+f(xmtk+1)] (Eq n)

In matrix form,

alt aAt T alt aAt T At
{— - 1+ 2} x| " :{ - 1- 2} x| "+ t) + T (X t)]
2AX 20X I, [Ty |, L2AX 2A I, [Ty |, 2

n

Putting all these n linear equations Eq. 1, Eq. 2, ... Eq.n—1, Eg n together in matrix
form, we arrive at

—k+1

—k — —
A\an nxl = BanT nx1 + f sl = bnxl

where
_T1k+l_ i le ) [ f (letk) + f (Xl’tk+1) |
-|-2k+l T2k f (Xz,tk) +f (Xz 'tk+1)
e | Polil e '
Tnkjll Tnlil f (anlvtk) +f (anli tk+l)
_-I-nk+l_nx1 | Tnk ™ L f (Xn 1tk) + f (Xn ! tk+l) dnx1
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ot ot ot
A 14 PRV 0 0
0 - :
: - 0
) ot o o
R )
oAt oA
0 0 0 1+
L ZAXZ ZAXZ_nxn
ot oAt oA
1 0 0
2A¢ A 2A¢
O . .
: ) 0
0 ot 1 oAt ot
NG NG 2N
ot ot
0 0 0 1
i 2A¢ ¢ |
oAt oAt At
(1— Al ]le + Al T, +?[ Ot + F (X t)]
oAt oAt oAt At
Al Tf +(1_FJTZK + A T, +?[ f 06 t)+ f 06, t.)]
oAt oAt oAt At
WTnk—l +(1_ sz JTnkl + ZAXZ Tnk +?[ f (Xn—l’tk) +f (anl’tkﬂ)]
oAt oAt At
W nk—1+[l_ 2AX2 ank +?[f(xn’tk)+ f(xn’tk+1)]

22
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Note that A and B are triangular matrices. We can use the sparse matrix solver in
MATLAB to create them and they are easily to be computed. In MATLAB, we simply

—k+1 — . . . R
use T = A\b to find the temperature rise with respect to time.

Let us recall from Figure 2, the idea of a dithering laser beam heat source

f (x,t)on a 1-D rod of Eq. 2.1 can be written differently:

2
ﬂ=aTg+a—Tf(x,t),0§x§Lx
ot ox® K
—(x=X, (t))z (Eq 34)
f(x,1) = ly T X (t) =X, +a-sin 27t x—i
" Jord? e ° period /' ° 2

Whered is the standard deviation of the Gaussian heat source. Figure 7 demonstrates
what the final temperature rise looks like for time = 1 using the Crank-Nicolson method
with number of points n= 200. All the input parameters are listed in Table 1. The
MATLAB code is attached in Appendix A.

Input Value Unit

o 1 m”2/s
K; 1 W/(m*k)
l 1 W/m~3
d 0.02 m

L, 1 m

X, 0.5 m

a 0.25 m

period |1 S

Table 1.  1-D rod MATLAB input parameters for dithering laser beam
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1-D Crank-Nicolson method with n=200 @ t=1

11

105/t T

Temperature

0.9 -

0.85

Figure 7. 1-D Crank-Nicolson method

B. THE FAST FOURIER TRANSFORM (FFT) METHOD

Recall that in (Eq. 2.10) we have shown that the solution of the 1-D
nonhomogeneous heat equation with insulating boundary conditions can be expressed as

eigenfunction expansion, where the eigenfunctions are cosine functions.

Now we show how to use FFT to implement the eigenfunction expansion for the

purpose of fast summation. This can be achieved in several steps.

First, we even extend the initial condition from [0,1] to [1,2] and then make it

periodic with period 2. After that, we map the interval[0, 2] to [0,27]. By doing this, the

Fourier series will only contain cosine terms.
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Second, we apply the discrete Fourier transform to the heat

. ou S
equation—=—-+ f(x,1):
a ot ox? (%)

ou o°u
F[E}: F{¥}+F[f(x,t)]

where F denotes the Fourier transform operator.

Now we need to calculate Fourier transformations of derivatives ofu(x,t). We

begin by recalling the spatial Fourier transform of u(x,t):
R 1 2z
Flu(x,t)]=u(k,t) == | u(x,t)e"*dx
[ux.]=u(k.) 27[! (1)

Note that this is also a function of time; it is an ordinary Fourier transform with
time t fixed. To obtain a Fourier transform in space, we multiply e* and integrate.
Spatial Fourier transforms of time derivatives can be derived easily because the spatial
Fourier transforms of a time derivative equals the time derivative of the Fourier

transform:

20 2z
P 200 L TR0 g - 2 L Tuget o |= 2 ik
ot 2w 3 ot ot| 2x ot

For spatial Fourier transform of spatial derivatives, the method of integrating by
parts can be used:

2z ikx
. [8u(x,t)} _ 1 Fouxt) oy u(x,t)e

OX B

X=27 o
= _ikr| L j u(x,t)e*™dx | = —ikzu(k,t)
2y OX 2 2

x=0

o

Here, we assume u—0asx — 0 or 27, and then the first term of this equation

vanishes.
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In general, the Fourier transform of the n™ derivatives of a function with respect
to x equals (—ik;z)n times the Fourier transform of the function, assuming that

u(x,t) — 0 sufficiently fast as x approaches periodic endpointx — 0 and x — 27 .

Likewise, Fourier transforms of a second derivative can be obtained:
o%u(x,t) . ou(x,t) L2 ~
F|:8T:|:—|k7l'|: [T :(—lkﬂ') U(k,t):—kzﬂ'ZU(k,t)

A

Finally, we can conclude that?j—r=(—ik7r)2l]+?(X,t)=—k2ﬂ'2fj+?(k,t) . The
factor z here is due to the fact that we map the interval [0,2] to [0,27]. Using the

method of integrating factor and multiplying e on this equation, we find

ekzzz'zt d_u

" k2% T U+ e (K, t)

We rewrite this ODE as

%(aek%) — ¥ (k1)

Integrating both sides yields

t t
u(k,t) = u(k,0)e ™t 4 g7 j e § (k, s)ds =u(k,0)e ™" + j e 0§ (k, s)ds
0 0
Here, we make the change of variables 7 =t—s to conduct our following derivation.

This equation becomes

t
uck,t) =u(k,0)e™ " + [ £ (k,t-7)dz

0

In order to estimate this integral, we approximate ?(k,t —7) by a linear function:

f(k,t—7)~ F(K,t)+

f(k,0)— f (k1) i
t

26



Then, it follows that

t
u(k,t) = u(k,0)e ™ " + j e T F (K, t—7)dr

0

t L
~l(k,0)e +je-k2”2{f(k,t)+ f(k’o)t_ fik.1) z‘}dr

0

=u(k,0)e ™ + £ (k,1)

(1-e )+ ?(k,O)t— (k) iekzﬂz,rdf

1
k272
= U(k,0)e ¥t + ?(k,t)kz—lﬁz(l—ekz”z‘)

+ f(k,O)— f(k,t) |:_ t e_kzﬂzt " 1 (1—e_k2”2t):l

t k2r? k*z?

_ ~ —k%7%t 2 1 _ —k%z%t

=u(k,0)e +f(k’t)—k2;f2 (1 e )

N F0)-F(k[ 1 1+t’Z° e
t Kzt Kzt ¢

l—(l+tk27r2 )e’ K2

kéz#

Once ﬂ(k,t) is found, apply the inverse discrete Fourier transform to it to
get u(x,t).

In our MATALB code, as attached in Appendix B, t is replaced by dt because in
each step along the time direction we march dt . The first component in h or
h, corresponds to the case where k =0. We apply H’Lospital’s rule to find the value
when k =0. More specifically, we have used the formulas:

-t

. 1 k2% A:k_z”z . 1-e 0 T —(—t)e‘”“ _
lim (l—e ) = lim 7 (atypej_llm——t

k-0 k272 250 20 1

C 1-(+tkPr2)e Kt A 1 (14tA)e A (0 _ —te M+ tl+t)e (0
lim Yo = lim——————| —type |=Ilim —type
k—0 k7 A0 A 0 40 22 0
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=200 @ t=1

1-D FFT method with n

[t —t(1+t/1)e‘”]}
Figure 8 shows the result using FFT method in MATLAB where all the input

parameters are from Table 1.

- - -1l ™= _
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105/ -
0.85
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28
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C. COMSOL MULTIPHYSICS 4.0A

COMSOL is one of the popular computer simulation software programs used to
model and simply translate real-world physical laws into the real world in the virtual
form using the finite element method. COMSOL is a commercial problem-solving tool
that produces results quickly. However, it is more important to investigate the accuracy
of the numerical results. We compare the solution differences between MATALB and
COMSOL in section D.

Figure 9 is the result from COMSOL and there is no surprise that both results
from MATLAB and COMSOL are very close. The step-by-step process of creating this
1-D dithering laser problem using (Eqg. 3.4) in COMSOL is attached in Appendix C.

Figure9. 1-D COMSOL
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D. COMPARISON ON A MODEL PROBLEM

We compare the results from the 1-D Crank-Nicolson method and COMSOL and
plot the relative difference in Figure 10, where the number of points is increased from
200 to 2001. The relative error between MATLAB and COMSOL results is about 10,
which is really small and tolerable. Here, we only show the comparison between Crank-
Nicolson method in MATLAB and COMSOL, and the comparison in FFT method and
COMSOL are also pretty similar. After several tryouts, it is intuitive to see that the
relative error goes down once we increase the number of points N, but it takes longer to

do so.

Relative Temp difference

Figure 10.  Relative error plot in 1-D Crank-Nicolson and COMSOL

E. REAL PROBLEM SIMULATION (STEEL AISI 4340)

After we have demonstrated that both MATLAB and COMSOL are giving us
acceptable results, we can choose a specific material to simulate a real problem. The
material we use in our 1-D plot comparison is Steel AISI 4340, a built-in material in
COMSOL which has the material contents listed in Table 2:
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Property Name | Value Unit
Heat Capacity C, 475 JI(kg*K)
Density P 7850 Kg/(m"3)
Thermal Conductivity | K, 44.5 W/(m*K)
Thermal Diffusivity | «, K; mA2/s
p-C,
Melting Point 1783 K
Table 2. Thermal property of Steel AISI 4340
The dithering laser we deploy has the inputs in Table 3:
Laser Input Name | Value | Unit
Magnitude of Gaussian source l, 1.0e9 | W/(m"3)
Effective radius of Gaussian heat source d 002 |m
Rotating frequency Freq |1 Hz
Laser stop time Time |1 S
Center of rotation X, 0.5 m
Rotating radius a 025 |m

Table 3.  1-D dithering laser input on Steel AlISI 4340

Figure 11 from MATLAB and Figure 12 from COMSOL depict the results of
temperature rise using the contents from Table 2 and Table 3. Both results are very close.
Figure 12 is from the Crank-Nicolson method and the FFT method yields a very similar
result. It is clear that the maximum temperature rise decreases as the rotating period
decreases; in other words, the higher the frequency is, the less the temperature rise

increases. At t=1s, Figure 13 shows the maximum temperature rise of the steel AISI
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4340 versus the frequency (reciprocal of the period) of the rotating Gaussian beam from
1Hzto100 Hz . It is observed that a higher frequency leads to lower the maximum
temperature rise. It should be pointed out that our results are consistent with earlier

analytical studies for the semi-infinite domain [5].

Figure 14 shows the temperature rise as a function of time at a fixed point
x =0.75 of the material with dithering laser beam period=0.1 sec. The temperature
increases as the dithering laser beam moves closer to the point and the temperature
almost stays steady as the laser beam moves away. The overall line shape behaves as an

increasing function of time.

Figure 15 shows the maximum temperature rise versus frequency with two

different heat sources I,. The higher 1, the higher the temperature rise.

1-D Matlab CN

900

800
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A T

400

Temperature

300

200

100

Figure 11. Temperature rise on the material of steel AISI 4340 using the 1-D Crank-
Nicholson method
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Figure 12,

Figure 13.
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Temperature rise on the material of steel AISI 4340 using 1-D COMSOL
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1-D maximum temperature rise of steel AISI 4340 versus the frequency of
the dithering laser beam
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The maximum temperature rise of steel AISI 4340 versus frequency with
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IV. NUMERICAL SOLUTION FOR A TRANSIENT, TWO-
DIMENSIONAL TEMPERATURE DISTRIBUTION IN A FINITE
FILM DUE TO A ROTATING OR DITHERING LASER BEAM

Now we extend our work in 1-D to 2-D.

A. THE CRANK-NICOLSON METHOD

We start with the 2-D nonhomogeneous heat equation

2 2
a_ (GU+QJ+ﬁf(x,y,t), 0<x<L,, 0<y<L,

_a_r p—
ot Xt oyt ) K,
(0% (0)° (Y=Y (1)°)
f(x,y,t)=—2-¢ 2d*
(X y.1) o
(Eq. 4.1)
X.(t) = x, +a-cos 27_[t , _L
period 2

. 27t L
t)=vy, +b-sin| —— , =
yc() yo [period) yO 2

(EQ. 4.1) can be illustrated as in Figure 16. The heat source f(x,y,t) created by the laser

beam is illustrated in Figure 17.

Laser beam

(0,L,) (L,.L,)
counter-clockwise
{ rotation
b
(x0.¥6) (N s
XY (0)
(xc (1), ¥y (1))
(0,0) (L,,0)

Figure 16. 2-D schematic of the laser beam and the finite work piece
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t Laser Beam TEM,,

IO, 2-D Gaussian Distribution

PR

| (X=X ()7 +(y =¥ (1)?)
2
Heat source: f (x,y,t) = ——e 2d
27zd

Figure 17.  Laser beam creates heat source as a Gaussian distribution [After 2].

We discretize this 2-D rectangular domain as shown in Figure 18. In order to

facilitate our presentation, we setL, = L, =1 and the thermal properties «; and K, equal

1, thus the heat equation is simplified to the form %u =Au+ f(x,y,t).

n+l

Figure 18. Discretization of a 2-D rectangular region
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The discretized point is denoted as (x;,Y;), where i goes from 1 to n and

j varies from 1 tom . Here, n and m are the total number of grid points in

x and y respectively. More explicitly,

X, =[i—1)Ax, AX = (L _O), i=12,..n
2 n

, J=1,2,..m

(L-9)

1
y,—=[J—EJAy, Ay =

The boundary conditions assume that the solid is insulated at the edges
(boundaries) and the initial condition is that there is no temperature rise with respect to
the ambient temperature initially. Thus, we have

o _aul g
OX|yeg  OX|yo
BCs: ’ '
al ol
o, ol
ICs: u(x,y,0)=0

We introduce the shorthand notation ufi =u(x;, Y;,t). Then the Crank-Nicolson

2-D scheme of (Eq. 4.1) becomes

i+1,j
At 2

k+1 k k k k k+1 k+1 k+1
Ui —up; _l[um —2U; ;U +u 20 U
AX® AX®

i,j+1
2 AY? AY?

k k k k+1 k+1 k+1
1 ui,j+1—2uiyj+uiyj_l+u =20+
(Eq. 4.2)

+%[f(xi,yj,tk)+f(xi,yj,tk+l)] 1<i<n, 1<j<m

k=012.... t =kAt

The BC can be satisfied by setting
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Ul’j = UO’J-
url'n(j = url:+1,j
ulk,l = uik0
uik,m = i,m+1

o . —~k
We can rearrange the temperature at the interior grid points to form a vector u as

depicted in Figure 19:

[FkT] Ym-lAY

3.m 1 U

2m

L7 0M nxm

: : o —~k : .
Figure 19. Putting the temperature of each point in a vector form u after discretization

We will convert the linear system (Eqg. 4.2) into the following matrix equation:

—k+1

Au =Bﬁk+?:5

—k=0 -
u =0
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where Aand B are the matrices to be found, {GM} are unknown and { }are known

We rewrite (Eq. 4.2) as
22;[([”1] 2u +U-1J]+%[.,+1 2u +U.,_1]
s L0 20t s T o Tt -l et
+%[f(xi,yj,tk)+f(xi,yj,tk+1)]

uk+1 — uikj +

ij

+

Putting u“** on the left-hand side of the equation, u“and f on the right-hand side

we obtain:
_ At 4k+1.+ 1+£+£ uk+l At U-k+l<— At u_kJ_rl _ At ‘k‘f’l
2Ax% Ay? | 2AxE T 2Ay? M oAy M
=% oy {1—% AAyt }ui5j+zi;[(2 uikl,j+22:/2 uifj+1+%:/2ui'fjl (Eq. 4.3)
At
+?[f(xi’yj!tk)+f(Xi'yj’tk+1):|
We start a simple case with i =1, j =1first,
At k+1 At At k+1 At k+1 At k+1 At k+1
2 {“A Ay} o Toay i Toay e
_ At _At At o, At o At At
207 A AV | T 2ART 2T oAy M 2Ay? 8
At
Oyt + 100 yut)]
K — 1 =" "and so on), we can simplify

Using the boundary conditions (ug; v Uy

this equation
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1+ At + At k+l At k+l At LIk+l
20X 2AYR | MY 2AXE T 2Ay? M

At At At At At
:|:1_ 2AX2 _Tyz:|ulk,l + 2AX2 u:,1+ 2Ay2 u;2+?[ f (Xl’ yl'tk)+ f(xv yl’tk+1)]

—k+ -k —
Recall the matrix form AU =BU +f . We can obtain the corresponding

components of Aand B from this equation:

A@LD =1+ At2+ Atz
2AX°  2Ay
At
AlL2)=-
¢.2) 2AX?
ALn+D) =21
2Ay
B(LY =1~ AL
2AX°  2AY
At
B(L2)=——-
¢.2) 2AX?
B(LN+1)= ok
2Ay

and we will put %[f(xl,yl,tk)+ f (X, Y1.t,,)] into a component of a vector function
called f .

When i =2, j=1, (Eq. 4.3) becomes

At um{l At At} o AU AU AL

= UMt gkt T gk u
2AX2 7 AXEOAY? | 2AxE Y 2Ay7 P 2AyR 20

u + uy, + u
2Ax% 22A

At At AL, At . At AL,
Py T ao? 722t 7 U
AX® Ay 2AYS 7T 2AYT o

At
+?[ f (X, Yo t) + F (%, yl’tk+1)]

To simplify, this is equivalent to
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+

At m{Hg At }UM_ At ea A

2A% AXP 2AyR |t 2axE M 2y P
A23) A02) ' ARD A(2:n+2)

At At At |, At At At
2 5| T aayT | e e a7 e T LT Ot Tl )]
[ —_— —_—

B(2.3) B(2.2) B(21) B(2,n+2)

When i=3, j=1, (Eq. 4.3) becomes

+_
A AY?

At k+1 At At k+1 At k+1 At k+1 At k+1
Eat { —} aad Tt el

At At At . At . At . At
T 2AX a Ay?

= uk, + ut + uk, + u
A2 AY? | 2Ax Pt 2ay2 PP 2AyR 38
At

+?[ f (X Y. t)+ f (X, yl’tk+1)]

To simplify, this is equivalent to

A A A A A
t um{ t At } oAU ea At

oA T A T oAy |1 T oA T Ay
y: ] At y
A(3,4) AG33) A(3,2) A(3,n+3)
At At At ] . AL, At . At
— u,. +11—-——— U, + u, .+ u +_fX, yt +fX, vt+
ZAXZ 41 { AXZ 2Ay2:| 31 ZAXZ 21 2Ay2 3,2 2 [ ( 3 yl k) ( 3 yl k 1)]
—_— ] — —
B(3,4) B(33) B(3,2) B(3,n+3)

When i=n, j=1, (Eq. 4.3) becomes

At k+1 At At k+1 At k+1 At k+1 At k+1
- 7 Uni1a Tt U ~ 7 Un11— 7Uno — 7 Uno
2AX" — = AX® Ay 2AX 2AY 2AY° — =

Atk{AtAt}kAtkAtkAtk

BET R v AY? Uni+ oz U +Ty2un,2 +Ty23“23

At
+?[ f (X, Yo t)+ F (X, yl’tk+1)]
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To simplify, this is equivalent to

At At N At N At N
1+ 2t 2 ur‘:,ll_ 2 u:—ll,l_ 2 u:,zl
2AX°  2Ay 2AX 2AY
| A(n,n) A(n.n-1) A(n,n+n)
At At At At At
:{ oAk 27y }Uﬁ,l + AR Uy gy + 27y Uy, +?[ F O Yart) + T O Yt
| B(n,n) B(n.n-1) B(n,n+n)

Now i=1, j=2, (Eqg. 4.3) becomes

At k+1 At At k+1 At k+1 At k+1 At k+1
2ax { i }ul‘z T2AC 0 oay? 0 ay?

AX® AY?
At At AL, At . At . At
CAE A o 2AX? UJLZ " 2Ay? Hio 2Ay? i

At
+?[ f (X, Y,.t) + F(x, yZ’tk+1)]

To simplify, this is equivalent to

At ukﬂ{l At At} » At2 o At e

-_— _+_
I M AP 2y 20y
A(n+1,n+2) A(N+Ln+1) A(n+1,(n+1)+n) A(n+1,(n+1)-n)
A A AT, A, A, A
Ig b2 {—E—A—yz}&ﬁ 0 U+ W u1,1+3[f(xliy2’tk)+f(xl1y27tk+1)]
B(n+1.n+2) B(n+in+l) B(n+L,(n+1)+n) B(n?(ﬁ)—n)

The same arguments hold for i =1,...,.nand j=3,...m.

Fori=1 j=m, (Eq. 4.3) gives

At s { At At} i At e At At

- U+ —+ —_—
2AX2 4" AP AY? | 2AxE 08 2Ay2 TS 2Ay? MM
At At At At At At

= 7 Uom 77 |bint 7 Uom t Uit U

2AX° © AX® Ay TO2AXS = 2AyT = 2Ay° T

At
+?[ f (Xi’ ym’tk)+ f(xl’ ym’tk+l)]
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To simplify, this becomes

At k+1 At At k+1 At k+1
- 2 u2,m + 2 + 2 1,m - 2 ul,mfl
2AX 2AX°  2Ay 2Ay
A(n(m-1)+1,n(m-1)+2) A(n(m=1)+1,n(m-1)+1) A(n(m-1)+1,n(m-1)+1-n)
At At At At
= 2 ulz(,m +1- 2 a2 ufm + 2 1k,m—1
2AX 2AX°  2Ay 2Ay
g ‘ |
B(n(m-1)+1,n(m-1)+2) B(n(Mm—1)+1,n(m-1)+1) B(n(m-1)+1,n(m-1)+1-n)
At
+?[ f (X, Yo t) + F (X, ym’tk+l)]
Fori=2, j=m,, (Eq. 4.3) takes the form
At k+1 At At k+1 At k+1 At k+1 At k+1
B 2 “3m Tt |Ybn~ Ui — U ma — 7 Yoma
2AX AX® Ay 2AX 2Ay° ——  2AY
At At At K At At At
T aao2 Y3am 1__2__2 Upm t+ 7 Uyt T ma t oz U
2AX AX® Ay 2AX 2AY° ——  2Ay

At
+?[ f (X, Yoo ) + T (X, ym’tk+1)]

To simplify, this becomes

At k+1 1 At At k+1 At k+1 At k+1
B 2 u3,m + 2 + 2 uz,m - 2 ul,m - 2 2,m-1
2AX AX®  2Ay 2AX 2Ay
A(n(m-1)+2,n(m-1)+3) A(N(M=1)+2,n(m—1)+2) A(n(m-1)+2,n(m-1)+1) A(n(m-1)+2,n(m-1)+2-n)
_ At Ul At At uX N At U N At Uk
20X m AX® 2Ay? | AT NG b 2Ay? 2mt
B(n(m-1)+2,n(m-1)+1) B(n(m-1)+2,n(m-1)+2-n)

B(n(m-1)+2,n(m-1)+3) B(n(m-1)+2.n(m-1)+2)

At
‘*‘?[ f (X, Yoo t) + F(X,, ym'tk+l)]

Finally, when i=n, j=m, (Eq. 4.3) becomes
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u +

At Pm At}um_ At ea A At

) u
2AX2 H AXZ Ay2 n,m 2AX2 n-1,m 2Ay2 n,m+1 2Ay2 n,m-1
At k At At Kk At K At ‘ At )
TG ul*,Lm 1_E_A_yz Un m +—2sz Un1m +Ty2un,m+l +Ty2un,m—l

At
+?[ f (Xn1 ym1tk)+ f(Xn’ ym’tk+1)]

To simplify, this becomes

P At At } o AU AL

+ j— —_—
202 2AY? | M 2AxE TR 2Ay? MM
%/—/
A(n-m,n-m) A(n-m,n-m-1) A(n-m,n-m—-n)
At At } ) At At At
=1-———u + — u", +— +—[ (X, Yoo t) + T (X0 Vi B |
2 2 n,m 2 n-1,m 2 n,m-1 n? Jm? vk n?! Jm? “k+l
{ 2AX" 2Ay 2AX 2Ay 2
B(n-m,n-m) B(n-m,n-m-1) B(n-m,n-m-n)

We can put all the components of A and B together to obtain the two

matrices A, ., and B

(n-m,n-m) *

—k+1

- ~k = = L
After obtaining A, . Unma = B, mUmma + T =bmma, we solve it in MATLAB

—k+1

by u =A\b.

We use (Eqg. 4.1) and the parameters in Table 4 to show the temperature rise of a
model problem with the numerical points n=m =128 in Figure 20. The MATLAB code
is attached in Appendix D.
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Input Value Unit
o 1 m"2/s
K, 1 W/(m*k)
Iy 1 W/m~3
d 0.02 m

L, 1 m

L, 1 m

X, 0.5 m

a 0.25 m

b 0.25 m
period |1 S

Table 4.  2-D film MATLAB input parameters for rotating laser beam
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(a) time= 10s, period= 1s (b) time= 10.25s, period= 1s
1 1
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1115

111

41.05

40.95

Figure 20.  Snapshots of the temperature rise on a film of a model problem induced by
a rotating Gaussian beam using the 2-D Crank-Nicolson method

B. THE FAST FOURIER TRANSFORM (FFT) METHOD

The structures of Fast Fourier Transform in 1-D and 2-D are similar; instead of
using fft and inverse Fast Fourier Transform ifft commands in 1-D MATALB code, the
2-D code uses fft2 and ifft2 to carry out the computation. Briefly speaking, one needs to
even extend the problem from domain [0,1]x[0,1] to [0,2]x[0,2], make the problem
periodic in both x and y direction with period 2, and then apply the Fourier transform and
its inverse to obtain the numerical solution. Our MATLAB code is attached in Appendix
E.
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Figure 21 uses the input parameters from Table 4 and returns a very similar result
to Figure 20. The 2D FFT has a better performance than the 2-D Crank-Nicolson method.
In other words, FFT can produce the result faster than the Crank-Nicolson method with
the same number of numerical points. We will discuss the details in Section D.

(a) time= 10s, period= 1s (b)

time= 10.25s, period= 1s
-~ 125

~ o I~ 12

-~
I
L
I
I
-

Temperature

Temperature
N
2

(C) time= 10.5s, period= 1s (d)

P 125

I
[

Temperature

Temperature

(Figure continued on next page.)
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(a) (b)

time= 10s, period= 1s time= 10.25s, period= 1s

o 0.2 0.4 0.6 0.8

X

(C) time= 10.5s, period= 1s

time= 10.75s, period= 1s
F—1.25 (d) s

0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X

Figure 21.  Snapshots of the temperature rise on a film of a model problem induced by
a rotating Gaussian beam using 2-D FFT method in 3-D view

C. COMSOL

Figure 22 (a) is the result from COMSOL and Figure 22 (b) is the result using the
Crank-Nicolson method in MATALB based on (Eg. 4.1) and Table 4 with the numerical

points n=m=128 in xand Yy direction, respectively. The results are very close and we

will do a point-by-point error analysis in Section D. The detailed process of creating this
2-D COMOSL is attached in Appendix F.
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(a) (b)

tume=1s, perod=1s e time= 1s, period= 1s

Figure 22. Model problem comparison: (a) COMSOL (b) MATLAB FFT 2 method

D. COMPARISON ON A MODEL PROBLEM

As we have mentioned in Section B, FFT returns the solution faster than Crank-
Nicolson; the efficiency comparison is shown in Figure 23. When N=2° points, we can
see that FFT takes about 10% seconds but Crank-Nicolson takes more than 10°seconds to
finish the computation. So FFT is about ten times faster than the Crank-Nicolson method

for this test problem.
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Efficiency plot: Crank-Nicolson V.S. FFT in 2-D code

10" ¢
10° | E

10° 3
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107 3
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: Crank-Nicolson 2D |]

10'4 [ . . I . . L
1 2

10 10 10 10
N (number of numerical points)

3

Figure 23.  Efficiency plot: Crank-Nicolson 2-D method versus FFT 2-D method

In Figure 24, by using the result from Figure 22, we compare the relative
difference in temperature rise with respect to time at a fixed point (x=0.5, y=0.5) in
MATALB FFT 2 method and COMSOL using number of point N=256. The relative
error is about 10 and this result is tolerable. The relative error goes down as we increase

the number of numerical grid points N.

x 1072 Difference between MATALB FFT 2 & COMSOL N=256
T T T T T

Relative difference
N
IN
L

1.4 | | | | | | | | |
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time(s)

Figure 24. Relative error plot in 2-D FFT method and COMSOL
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E. REAL PROBLEM SIMULATION (STEEL AISI 4340)

We use Steel AISI 4340 as our test material with material properties from Table 2

and the rotating laser we deploy has the following input in Table 5:

Input Value Unit

ly 1.0e8 W/m"3
d 0.02 m

L, 1 m

L, 1 m

X, 0.5 m

Yo 0.5 m

a 0.25 m

b 0.25 m
period |1 S

Table 5.  2-D rotating laser input on Steel AISI 4340.

Figure 25 depicts the temperature rise at different times within one period. It is
observed that heat will not spread out quickly enough due to the properties of the Steel
AISI 4340 material so the temperature at those points directly shined by the laser rise
quickly. However, those points far away from the points hit by laser, for instance, the

center point (x=0.5, y=0.5), has almost no temperature rise.
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(©) (d)

Figure 25.  Snapshots of the temperature rise on a Steel AISI 4340 film induced by a
rotating Gaussian beam using COMOSL with period=1s

Figure 26 shows the temperature rise as a function of time at a fixed point
(x=0.75, y=0.5) of Steel AISI 4340 with dithering laser beam period=0.1 sec. The
temperature increases as the laser beam rotates close to the point and the temperature
almost stays steady as the laser beam moves away. The overall line shape behaves as an

increasing function of time, as expected.
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Fixed point (x=0.75 y=0.5) temperature change
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Figure 26.  2-D temperature change with time at a fixed point of Steel AISI 4340 with
rotating beam period=0.1s

The quantitative relationship between the maximum temperature rise and the
rotating frequency at time=1s is depicted in Figure 27; the maximum temperature rise is a

decreasing function of the frequency (reciprocal of the rotating period).

Max Temp rise VS Frequency at time=1s

350 -

300

250

200

F" a1s0

100

50

frequency(Hz)

Figure 27.  2-D maximum temperature rise of Steel AISI 4340 versus the frequency of
the rotating laser beam
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V. NUMERICAL SOLUTION FOR A TRANSIENT, THREE-
DIMENSIONAL TEMPERATURE DISTRIBUTION IN A FINITE
SOLID DUE TO A ROTATING OR DITHERING LASER BEAM

We have already verified that COMSOL has returned a very accurate solution
compared with other numerical methods in both 1-D and 2-D codes. Therefore, instead
of writing a complicated MATLAB 3-D code, we use COMSOL to obtain the 3-D
answer. Recall (Eq. 4.1) and impose insulated boundary conditions. We use Steel AISI
4340 as our test material with material properties from Table 2 and the rotating laser we

deploy has the following input from Table 6:

Input Value Unit
l 5.0e5 Wimn2
d 0.02 m

L, 1 m

L, 1 m

L, 1 m

X, 0.5 m

Yo 0.5 m

a 0.25 m

b 0.25 m
period |1 S

Table 6.  3-D rotating laser input on Steel AISI 4340

Figure 28 depicts the temperature rise at different times within one period. The

hottest spot is where the point hit instantly by the laser as in the 1-D and 2-D cases. The
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maximum temperature rise is 1468K. Those points far away from the area hit by the
laser, for instance, the center point (x=0.5, y=0.5, z=1), have little temperature rise.

Hrme=Di, parod=1s . Hmes s, percds 1

(a) (b)

fazaa

.....

Figure 28.  Snapshots of the temperature rise on a Steel AISI 4340 solid induced by a
rotating Gaussian beam using COMSOL with period=1s

Figure 29 shows the temperature rise at a fixed point (x=0.75, y=0.5, z=1) as a
function of time. Figure 30 shows the maximum temperature rise of the whole domain as
a function of time; the overall hottest spot is at (x=0.341, y=0.307, z=1) when time=0.64s
with the rotating laser beam period=1s. Figure 31 and Figure 32 depict the temperature
rise at fixed time=1s in different layers. It is observed that the heat does not spread
downward quickly and there is almost no temperature rise 0.1m below the top surface
shined by the laser. After several tryouts, materials have larger values in diffusivity than
Steel AISI 4340 can make heat spread out faster and so make the temperature rise higher
than Steel AISI 4340.
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Fized point (x=0.75, y=0.%, z=1} temp change
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Figure 29. 3-D temperature change as a function of time at a fixed point of steel AlSI
4340 with rotating laser beam period=1s
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Figure 30. Maximum temperature as a function of time with rotating laser beam period
=1s
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Figure 31.  3-D temperature rise at different layers from z=0 to z=1
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Figure 32. Maximum temperature at different depth (a)z=1 top surface (b)z=0.99
(c)z=0.95 (d)z=0.90
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Figure 33 shows the maximum temperature rise at time=1s when the period is
reduced to 0.1s; the laser beam rotates 10 cycles. The maximum temperature rise
decreases from 1754K of period=1s to 670K of period=0.1s. Therefore, the maximum

temperature rise can be reduced by increasing the frequency of the rotating laser beam.

Figure 34 shows the temperature rise at a fixed point (x=0.75, y=0.5, z=1) of
period=0.1s as a function of time. The overall temperature rise oscillates, and its
envelope behaves as an increasing function of time, but its maximum temperature rise is
smaller compared to the maximum temperature rise with period=1s, as illustrated in
Figure 29. Figure 35 shows the maximum temperature rise of the whole domain as a
function of time, and its envelope behaves as an increasing function as well. Figure 36
depicts the quantitative relationship between the maximum temperature rise and the
rotating frequency at time=1s. The results agree with earlier analytical studies for the

semi-infinite domain [5].

@) (b)

180 '
" 300
180

(© ) (d)

Figure 33.  Snapshots of the temperature rise on a Steel AISI 4340 solid induced by a
rotating Gaussian beam using COMSOL with period=0.1s
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Figure 34. 3-D temperature change as a function of time at a fixed point of Steel AlSI
4340 with rotating laser beam period=0.1
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Figure 35. Maximum temperature as a function of time with rotating laser beam period
=0.1s
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Figure 36.  3-D maximum temperature rise of Steel AISI 4340 versus the frequency of
the rotating laser beam
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VI. CONCLUSIONS AND FUTURE WORK

In this thesis, both analytical and numerical solutions for describing the transient
temperature rise induced by a moving laser in a finite domain have been developed. We
have exploited several methods including the eigenfunction expansion, the Crank-
Nicolson scheme, FFT and COMSOL.

We have confirmed that the faster the laser rotates (i.e., the higher the frequency)
the lower the temperature rise induced. In other words, to reduce the military’s
vulnerability to high-energy laser weapons it is possible to let the object rotate or rock to
minimize the temperature rise. The quantitative relationship between maximum
temperature rise and laser beam rotation frequency can be used as a general guide for
adjusting the speed of rotation of the object in order to prevent temperature rise from

reaching the melting point.

This thesis can be explored deeper in the future. Some future potentials
endeavors include but not limited to:

A. Increase or decrease the effective radius of the laser beam d in Figure 3

and Figure 17 to analyze how temperature rise is affected.

B. Increase or decrease the radii a and b of the rotating trajectory of the
Gaussian beam in Tables 3, 5 and 6 to analyze how maximum temperature

rise is affected.

C. Create 3-D MATALB codes and compare the results with COMSOL..

D. Instead of using TEM,, mode Gaussian distribution as the heat source
illustrated in Figure 17, different transversal modes in a laser spot such as
TEM,; or TEM,;, can be used to further seek the analytical and numerical

solutions [8].

E. Thermal properties are assumed to be temperature dependent: this makes

the nonhomogeneous heat equation nonlinear, but more realistic [3]. This
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nonlinear model can be solved without mathematical background in
nonlinear programming using appendix G, COMSOL code for 3-D
simulation by imposing certain materials whose thermal properties are

temperature-dependent, such as silver [9].

In COMSOL 3-D geometry, try cylindrical coordinate and spherical
coordinate rather than Cartesian coordinate.

Conduct an experiment and see if the theoretical modeling is accurate.
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APPENDIX A. CRANK-NICOLSON CODE FOR 1-D SIMULATION

N=256; % number of numerical points in [0, 1]
dx=1/N; % spatial step

x=([1:N]"-0.5)*dx; % numerical grid

u=zeros(N,1); % solution at current time, u()=u(x())
d=0.02; % radius of Gaussian source

a=1.0; % magnitude of Gaussian source
uO=zeros(N,1); % initial value

u=u0;

%

dt=dx/8; % time step

T=25/256;

m=T/dt; % number of time steps

t=[0:m]*dt;

%

r=dt/dx"2;

% Fforming the matrices

d0=[0.5; ones(N-2,1); 0.5]*r;

d1=0.5*ones(N,1)*r;

d_1=0.5*ones(N,1)*r;

A=spdiags([-d_1, 1+d0O, -di],[-1,0,1],N,N);
N,

B=spdiags([d_1, 1-dO, di],[-1,0,1],N,N);

%

y0=0.5+0.25*sin(10*2*pi*0); % location of Gaussian source at t"{k-1}
fo=a*exp(-(x-y0) .2/ (2*d"2))/sqrt(2*pi*d™2); % Gaussian source at t"{k-

1}

%

plot(x,u,"b-","linewidth",2.0)

axis([0,1,-0.04,0.16])

drawnow

for k=1:m,
y1=0.5+0.25*sin(10*2*pi*t(k+1)); % location of Gaussian source at t"k
fl=a*exp(-(x-yl) .-~"2/(2*d"2))/sqrt(2*pi*d™2); % Gaussian source at t"k

b=B*u+dt*(fO0+f1)/2; % right-hand-side of the linear eq
for u™{k}

u=A\b; % solving the linear eq for u~™{k}

TO=F1;

%pause(0.1)
plot(x,u,"b-","linewidth",2.0)
axis([0,1,-0.04,0.16])
drawnow

end
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APPENDIX B. FFT CODE FOR 1-D SIMULATION

N=256; % number of numerical points in [0, 1]
dx=1/N; % spatial step

x=[0:N] " *dx; % numerical grid

u=zeros(N+1,1); % solution at current time, u@)=u(xd))
d=0.02; % radius of Gaussian source

a=1; % magnitude of Gaussian source
uO=zeros(N+1,1); % initial value

u=u0;

%

dt=dx/8; % time step

T=25/256;

m=T/dt; % number of time steps

t=[0:m]*dt;

%

% going to the coefficients of cosin expansion

w=[u; u(N:-1:2)];

z=fFft(w);

cu=real (z(1:N+1))/N;

r=([0:N]"*pi)."2;

hi=[dt; (Q-exp(-r(2:N+1)*dt))./r(2:N+1)];

h2=[0.5*dt"2; (1-(r(2:N+1)*dt+1).*exp(-r(2:N+1)*dt))./r(2:N+1).72];

%

y0=0.5+0.25*sin(10*2*pi*0); % location of Gaussian source at t"{k-1}
fo=a*exp(-(x-y0) .2/ (2*d"2))/sqrt(2*pi*d™2); % Gaussian source at t"{k-
1

w=[Ff0; fO(N:-1:2)];

z=fFft(w);

cfO=real (z(1:N+1))/N;

%

plot(x,u,"r-","linewidth",2.0)

axis([0,1,-0.04,0.16])

drawnow

for k=1:m,
y1=0.5+0.25*sin(10*2*pi*t(k+1)); % location of Gaussian source at t"k
fl=a*exp(-(x-yl) .~"2/(2*d"2))/sqrt(2*pi*d™2); % Gaussian source at t"k
w=[f1; F1I(N:-1:2)];
z=fFft(w);
cfl=real (z(1:N+1))/N;

% update cu
cu=cu.*exp(-r*dt)+cfl.*hl1+(cfO0-cfl)/dt.*h2;
cfO=cf1;

% going back to the function
z=N*[cu; cu(N:-1:2)];
w=ifft(2);
u=real(W(1:N+1));
%pause(0.1)
plot(x,u,"r-","linewidth",2.0)
axis([0,1,-0.04,0.16])
drawnow

end

67



THIS PAGE INTENTIONALLY LEFT BLANK

68



APPENDIX C. COMSOL CODE FOR 1-D SIMULATION

1. Open COMSOL 4.0a with 1D and hit =
143 Model Wizard . [ Model Libary

Select Space Dimension CRESE

03D

(7) 2D axisymmetric

®2

(711D axisymmetric

@10

0D
2. In Heat Transfer, select Heat Transfer in Solids (ht) and right-click Add selected then
hit =

Add Physics

i 7, Recently Used
. ™| AC/DC
c]# Acoustics
+*: Chemical Species Transport
= 1[I Electrochemistry
- 42 Fluid Flow
a Heat Transfer
§ Heat Transfer in Solids (ht)
E® Heat Transfer in Fluids I:I'! 4k Add Selected
& Heat Transfer in Porous Iereara TrrEr
& Heat Transfer with Surface-to-5urface Radiation (ht)
n Bioheat Transfer (ht)
Surface-to-Surface Radiation (rad)
- Joule Heating (jh)

@ Plasma

Ao Mathematics

&= €
Selected physics

| -g Heat Transfer (ht)

3. In Preset Studies, select Time Dependent and hit Finish '#.,

+3 Model Wizard Model Library | =

Select Study Type < = [

Studies

4 fg= Preset Studies

[/ Stationary

¥, Time Dependent
e Customn Studies

Selected physics
| = Heat Transfer (ht)
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4. Under Model Builder, right-click on Global Definitions and left-click to select
Parameters, input Parameters as following:

. Madel Builger 7 = B it Settings . [l Model Libray R°t
2 19 1-Dimgh |'.r§.;.;,l ;
4 E Global Definitions | Parameters
| Pararmeters v Farameters
& — Model1 [madl)
I E Definitons Marne |Euprtssinn |1.fa1ue |D!scri|:-1in:n
A\ Geomerry 1 1 0.0%m| 002m Gaussian Beam Radius
b 8 Materials . aering 1(s] 15
I l :"”1"5““' (hé) B 0.5 05m range of rotation
I;i j;h ! il 0.5[m] 0im certer of ratation
PRl T 3 g
T —r- L1 LO[W/m"3] 1 W magnitude of Gaussizn Beam
b [ty Sobver Configurations
- t"-lll D:rll"‘r
5. Right-click on Definitions and left click to select Variables, input Variables as
following:
del Builder 7 = 0| Settings E Model Library
1-D.mph (root) R
E Global Definitions 2= Vaiables
= Modell (modl) Geometric Scope
£ Definitions
a= Variables 1 (eometric entity levet [Entire model
1 Viewl
A\ Geometry 1 » Variables
i Materials _ _
i Heat Transfer thi Mame | Exprescion | Unit
5 Mesh 1 ¥ W+a*sin{2*pi"t/penod) m
= Study1 f D/sqrti2 pitd *2)[L/ m]"expl-xc) " 2/(24°2))  Wim®

6. R'igjht-(':lick'o'n Geometry and left-click to add Interval. The Left endpoint is 0 and

the Right endpoint is 1. Left- click the build all button to create geometry.
'fi Model Bulder 7 = O Selfings [ Model Library HEIETE
4 19 1-Dimph (roat)

E Glabal Definitions

[ Interval

4 — Madel1 (modl) it
£ Definitions _
4 I;—"-.\ Geometry L Murmber of intervals; | One v

A Interval 1 (i1)

Left endpoint: 0 m
:;ﬂ Form Unien (fir|| e
4 B Makerials Right endpoint: 1 m
7. Right-click on Materials and left-click on add Materials. Make all the values in

Material Contents equal 1. Right-click on the “line” in Graphics and left-click on it to
select. Make sure that “ 1 is under the selection.
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& bl 12 =
Tebsions W,
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ol Dl
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t Sadyt
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| B
= Mateia
¥ Dunies e
15 D Vil EanzPrzeoan
{ Tatm Esnthevery
. I0PAL Greap L Prcwraguiciizdk
Regad Sald bhckaruzn
Pyl Frntriir Makt
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8.

+

v Yaiarial landerhs

Al o e

< Trareldaadaly w 1 Wall sk
" Munity do | k§ia" Rk

< et cmpasity woard punem J3 i Mt E] i

-

!!\u‘rl ik |l i:'\':;ﬂ.":l:q:

Right-click on Heat Transfer and left-click to add Heat Source.

"B g s i o w-|aasl|s of5a &
B [} o2 11 4 L 0E i 13 1¥ 1
e = g | e
ORI L4 D0EET

For General

source Q, Select User defined and Put “f”, which is the heat source defined from the

Variable.
4 V8 1-D.mph {root)
I+ ‘& Global Definitions
4 — Modell {modl}
= Definitions
4 O\ Geometryl
W Interval 1 (i)
=4 Form Union (fin)
a4 8 Materials
& Sclf Defined
a ! Heat Transfer (ht)
5" Heat Transfer in Solids 1
= Thermal Insulation 1
5 Initial Values 1
! Heat Sourcel
# (5 Mesh1
f Size
> [} Edgel
a 53 Studyl
Jii, >5tep L: from O to period sec
[Fr. Solver Configurations
a lgl Results

|

Heat Source
Domains

Selection: | Idanual

1 |
=)

1 b'n gk
b4
= Heat Source
@ General source
@ |User defined -
f wWim®

) Linear source

I::}="7‘|:'T

In Initials Values, make Temperature equal O.
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[=

del Builder 7 = 0 | Settings . [ Model Library
1-D.mph (root] B -
= Global Definitions i Rl
— Modell (modl) Domain
= Definitions
d :,!‘-.__ Geometry 1 Selection: | All domains
4, Interval 1 (i) ]
Hﬂi Form Unian (fin)
4 $8 Materials
&8 Self Defined
4 3 Hest Transfer (ht)
£ Heat Transfer in Solids 1
% Thermal Insulation 1

= Initial Values 1

I Hest Sourcel * Initial Values
4 (5 Mesh1 .
3 Eempeerature;
£ Size w2
i Edgel T O[K] K
&3 Study1 Surface radiosity:
[, >5tep 1: from 0 to period sec
o Sobver Confiourations 10 ] ) W
10. Right-click on Mesh and select Edge, in Edge under Element Size, select Custom and
make Maximum element size equal 1/200. Then select the build all button %I to build
the mesh.
T Model Builder ¥ = O[iiSettings [l Model Library | M REE
4 % 1-D.mph (root) AT
£ Global Definitions ..7.,.'51 Size
4 — Modell (modl) Geometric Scope
- = Definitions
4 3\ Geometry 1 Geometric entity level: |Entire geometry d
A\ Interval 1 (i)
[## Form Union (fin) Element Size
a 8 Materials
I @ Self Defined (71 Predefined Extremely fine
a g Heat Transfer (bt} @ Custom
9 Heat Transferin Solids 1 )
% | Thermal Insulation 1 + Element Size Parameters
57 Initial Values 1
I Heat Sourcel [¥] Maximum element size:
4 (58 Mesh1 17200 =
uij Size : :
g Ej Edgel [] Maximurn element growth rate:
£ Sizel 11
4 &9 Studyl [7] Resolution of narrow regions:

[, >5tep 1: from 0 to period sec

Fa Cmbome T mmfimiirmabimm -

11. Under Study in Step, select Range button , under Entry method, select
Number of values, start from 0 and stop at “period” which is defined in the parameters.
Put Number of values to be 20.

1
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del Builder = = O[3 settings [l Model Library | @ =4d

1-D.mph (root)
= Global Definitions
— Model 1 (mod1)
= Definiticns
A Geometry 1
A Interval 1 (i)
Form Union (fin)
#8 Materials
#E Self Defined
-a Heat Transfer (ht)
| Heat Transfer in Sclids 1
Thermal Insulation 1
Initial Values 1
. Heat Source 1
B Mesh1
Iﬁ Size
[i7] Edge1
£ Sizel
e Studyl
[, =Step 1: from 0 to period sec
[Fr. Solver Configurations

@ Solverl

i)

- AT AT

S—‘;.g Compile Equations: from 0 to

uvw Dependent Variables 1
[y, Time-Dependent Sobver 1
[ Direct
h Advanced
=5 Fully Coupled 1
Direct1
Results
i Data Sets
32t Derived Values
EH Tables
P, 1D Plot Group 1
E!fj Report
= Playerl

le. Time Dependent

- Study Settings

Times: range(0, (pericd[1/5]-0)/19, period[1/5]) 5

Range E

Entry method: Mumber of values S
Stark: 0 —_|
Stop: period[1/s] J
Mumber of values: 20 v]
Function to apply to all values: ]

[ Replace || add || cCancel |
Geometry 1
Mesh: [Mesh 1 -

~ Physics Selection
Physics interfaces:

Heat transfer (ht)

Use in this study

Discretization: [ Physics settings - l

12. Under Time-Dependent Solver, make Relative tolerance to be 1.0e-6. Left Click

on_— to compute.

werdel Fuileher it =
8 L-D.mph {rocd)
= Global Definvhions
koda 1 frodi)
= [Definitions
W Geomctny 1
A Interval 1 (i)
ﬂ Farm Union (Tin)
HE Materials
€ Seif Definad
2 Hest Transfer (ht)
BT Hial Tranelor in Salid 1
51 Thermal Insulation 1
B Initial Values 1
T Hieal Soure 1
i Meshl
L] Size
T Fdge1
£ Sizel
wa Study 1
[ = Stepe Tz Froven O for perined sec
M Solver Configuraticns
& Solverl
B Compile Equations: from 0 4o
ure Dependent Vanables 1
[y Time-Dependent Soherl
[ Direes
Yy Advanced
m Fully Coupled 1
[5] Dfirect L

13. Ifinally, under Results,

(1 ety Moo Loy | 4 =a-"

Lo lime-Depoendent Solver

- General

Tirres: rangolll, [pored|1e] 0119 penod[1,557) L I

Relative tnleranc e 1 0e-6

¥ Absolute Tolerance
¢ lime Stepping

¥ Results While: Solvimg
® [t

¢ Advanced

+ Log

select Line Graph under 1D Plot Group and select time to be
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1 only, we should be able to see the result like Figure 9.
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analysis can be d

data and further compare results with MATLAB.

74

one under Report, such as generate a movie and export



APPENDIX D. CRANK-NICOLSON CODE FOR 2-D SIMULATION

N=128; % number of numerical points in x direction
M=128; % number of numerical points in y direction
dx=1/N; % spatial step

dy=1/M;

x=([1:N]"-0.5)*dx; % numerical grid
y=([1:M]"-0.5)*dy;

[xx,yyl=meshgrid(x,y);

u=zeros(M*N,1); % solution at current time
d=0.02; % radius of Gaussian source
a=1; % magnitude of Gaussian source
uO=zeros(M*N,1); % initial value

u=u0;

%

dt=0.5*dx; % time step

m=11; % number of time steps
t=[0:m]*dt;

%
rl=dt/dx"2;
r2=dt/dy”2;

%
A = sparse(L[]1.[1.L[1.N*M,N*M);
sparse(L], L1, [1,N*M,N*M);

B
%% Forming the matrices
% the bottom boundary
k=1;
A(k,k)=1+r1/2+r2/2;
A(k,k+1)=-r1/2;
A(Kk,k+N)=-r2/2;
B(k,k)=1-r1/2-r2/2;
B(k,k+1)=r1/2;
B(k,k+N)=r2/2;
%
k=N;
A(k,K)=1+rl1/2+r2/2;
A(k,k-1)=-r1/2;
A(k,k+N)=-r2/2;
B(k,k)=1-r1/2-r2/2;
B(k,k-1)=r1/2;
B(k,k+N)=r2/2;
%
for i=2:(N-1),
A(i,1)=1+r1+r2/2;
A(i,i-1)=-r1/2;
A(i,i+1)=-r1/2;
A(,1+N)=-1r2/2;
,1)=1-r1-r2/2;
,1-1)=rl1/2;
,1+1)=rl/2;
,1+N)=r2/2;

(
(
(
(

W w

end
% the middle layers
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for j=2:(M-1),
for 1=2:(N-1),
k=1+(J-1)*N;
A(K,k)=1+rl1+r2;
A(k,k-1)=-r1/2;
A(k,k+1)=-r1/2;
A(K,k+N)=-r2/2;
A(k,k-N)=-r2/2;
B(k,k)=1-r1-r2;
B(k,k-1)=rl1/2;
B(k,k+1)=rl1/2;
B(k,k+N)=r2/2;
B(k,k-N)=r2/2;
end

end

% left boundary

for j=2:(M-1),
k=1+((-1)*N;
A(k,K)=1+r1/2+r2;
A(k,k+1)=-r1/2;
A(K,k+N)=-r2/2;
A(k,k-N)=-r2/2;
B(k,k)=1-r1/2-r2;
B(k,k+1)=r1/2;
B(k,k+N)=r2/2;
B(k,k-N)=r2/2;

end

% the right boundary

for j=2:(M-1),
k=N+(J-1)*N;
A(k,K)=1+rl/2+r2;
A(k,k-1)=-r1/2;
A(k,k+N)=-r2/2;
A(k,k-N)=-r2/2;
B(k,k)=1-r1/2-r2;
B(k,k-1)=r1/2;
B(k,k+N)=r2/2;
B(k,k-N)=r2/2;

end

% the upper boundary

k=1+N*(M-1);

A(k,k)=1+r1/2+r2/2;

A(k,k+1)=-r1/2;

A(k,k-N)=-r2/2;

B(k,k)=1-r1/2-r2/2;

B(k,k+1)=r1/2;

B(k,k-N)=r2/2;

%

k=N+N*(M-1);

A(k,k)=1+r1/2+r2/2;

A(k,k-1)=-r1/2;

A(k,k-N)=-r2/2;

B(k,k)=1-r1/2-r2/2;

B(k,k-1)=rl1/2;

B(k,k-N)=r2/2;
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%

for 1=2:(N-1),
k=1+N*(M-1);
A(k,k)=1+r1+r2/2;
A(k,k-1)=-r1/2;
A(k,k+1)=-r1/2;
A(k,k-N)=-r2/2;
B(k,k)=1-r1-r2/2;
B(k,k-1)=r1/2;
B(k,k+1)=rl1/2;
B(k,k-N)=r2/2;

end

%% build the vector f

f=zeros(N*M,m);

fl=zeros(N,M);

for k=1:m,
Xxc=0.5+0.25*cos(10*2*pi*t(k));
yc=0.5+0.25*sin(10*2*pi*t(k));
fr=a*exp(-(xXx-xc) -2/ (2*d"2)-(yy-yc) - "2/ (2*d"2))/ (2*pi*d™2);
T(:,k)=reshape(ff,N*M,1);

end

figure(2)

drawnow

for k=1:(m-1),
b=B*u+dt*(Ff(:,k)+f(:,k+1))/2;
u=A\b;
pause(0.-2)
temp=reshape(u,M,N);
h=surf(xx,yy,temp)
set(h, "edgecolor”, "none", "facecolor”, "interp");
%view(2)
drawnow

end
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APPENDIX E. FFT CODE FOR 2-D SIMULATION

clear

%

N=128; % number of numerical points in [0, 1]
dx=1/N; % spatial step

Xx=[0:N] " *dx; % numerical grid

[xa, ya]=meshgrid(x,x);

u=zeros(N+1,N+1); % solution at current time, u(j)=u(x(}))
d=0.02; % radius of Gaussian source

a=1; % magnitude of Gaussian source
uO=zeros(N+1,N+1); % initial value

u=u0;

%

dt=dx/8; % time step

T=12/128;

m=T/dt; % number of time steps

t=[0:m]*dt;

%
% going to the coefficients of cosin expansion
w=[u; u(N:-1:2,:)];
w=[w,w(:,N:-1:2)];
z=Ffe2(w);
cu=real (z(1:N+1,1:N+1))/N"2;
Na=[0:N];
[Nx, NyJ]=meshgrid(Na, Na);
r=(Nx*pi) . "2+(Ny*pi) -"2;
r(1,1)=1;
hl=(1-exp(-r*dt))./r;
h1(1,1)=dt;
h2=(1-(r*dt+1) . *exp(-r*dt))./r."2;
h2(1,1)=0.5*dt"2;
r(1,1)=0;
%
X0=0.5+0.25*cos(10*2*pi*0);
y0=0.5+0.25*sin(10*2*pi*0); % location of Gaussian source at t™{k-1}
fo=a*exp(-((xa-x0) ."2+(ya-y0) .~2)/(2*d"2))/ (2*pi*d"2); %  Gaussian
source at t™N{k-1}
w=[f0; fFO(N:-1:2,:)];
w=[w,w(:,N:-1:2)];
z=Ffe2(w);
cfO=real (z(1:N+1,1:N+1))/N"2;
%
surf(xa, ya, u, “edgecolor®,"none”,"facecolor®, “interp”)
axis([0, 1, 0, 1, -0.04,0.4])
caxis([0, 0.4
view(3d)
drawnow
for k=1:m,
x1=0.5+0.25*cos(10*2*pi*t(k+1));
y1=0.5+0.25*sin(10*2*pi*t(k+1)); % location of Gaussian source at t"k
fl=a*exp(-((xa-x1) ."2+(ya-yl) .~"2)/(2*d"2))/ (2*pi*d"2); % Gaussian
source at t"k
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w=[Ff1l; F1(N:-1:2,:)];
w=[w,w(:,N:-1:2)];

z=Ffe2(w);

cfl=real (z(1:N+1,1:N+1))/N"2;

% update cu
cu=cu.*exp(-r*dt)+cfl.*hl+(cfO-cfl)/dt.*h2;
cfO=cfl;

k

% going back to the function
z=N"2*[cu; cu(N:-1:2,:)1;
z=[z,z(:,N:-1:2)];
w=1Fft2(2);
u=real (W(1:N+1,1:N+1));

%pause(0.2)
surf(xa, ya, u, "edgecolor”®,"none", "facecolor”, "interp")
axis([0, 1, 0, 1, -0.04,0.4])
caxis([0, 0.4D
view(2)
drawnow
end
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APPENDIX F. COMSOL CODE FOR 2-D SIMULATION

2. Open COMSOL 4.0a with 2D and hit = _
1Y Model Wizard ﬂm Model Library | & Material Browser | =

Select Space Dimension SR |

3D

~ 2D axisymmetric

@ 2D

"1 1D axisymmetric

71D

" 0D
2. In Heat Transfer, select Heat Transfer in Solids (ht) and right-click Add selected then
hit =
Add Physics

[ :\ Recenthy Used
r % AC/DC
 E]® Acoustics
r+ w*s Chemical Species Transport
& 1 Electrochemistry
» & Fluid Flow
- Heat Transfer
8 Heat Transfer in Solids (ht)
E® Heat Transfer in Fluids I{P{ gk Add Selected
& Heat Transfer in Porous .’I‘ TraTrrTy
& Heat Transfer with Surface-to-Surface Radiation (ht)
m Bicheat Transfer (ht)
Surface-to-5Surface Radiation (rad)
- Joule Heating (jh)

» & Plasma

1+ fu Mathematics

4
Selected physics

| g Heat Transfer {ht)

3. In Preset Studies, select Time Dependent and hit Finish '#.,

+3 Model Wizard Model Library | =i
Select Study Type &= o [5
Studies

4 £5 Preset Studies

[/ Stationary

[y, Time Dependent
= Customn Studies

Selected physics
| a Heat Transfer (ht}
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4. Under Model Builder, right-click on Global Definitions and left-click to select
Parameters, input Parameters as following:
f; ModelBuder .~ = B 1 Setings [ Mocel Libary| & Matea Browses

g

: % -
13 2-D.mph {rost)
chies F Parameters
E Globe! Definitions ||
% Parameters v Parameters

{1 Modell fmodl)

s Studyl Name Expression Value Description
i Restits 002[m] 002 m radius of Gaussian Source

penad 1f5) 1s rotating perid of heat source
a 0.25[m] 0.5m radius of retating trajecory in x directicn
b 0.25[m] 025m radius of rotating trzjectary in y direction
il (1.5[m] 05m center of nataton inx direction
W 0.5[m] 05m center of ratation in y directicn
1] 10e8[Wim"3] 1088 Wiim® intensity of hest source
5. Right-click on Definitions and left-click to select Variables input Variables as
following:
I'l Model Builder o E'rif*mw Mods! E.lhrarg,; % Material Browser
19 2-D.mph (root] = :
£ Global Definitions || Yanaies
i1 Model1 {modl} Geametric Scope
= Definitions
a= Vanables 1 Geomietric entity level: lEntirﬂ micdel
4 Boundary Syster
1 Viewl » Variables
A Geometry 1 r - -
£ Materials | Mame | Expression | LUnit |
A Heat Transfer fhe) |2 wl+a"cos(2"pit/ peried) m
28 Mesh1 | ye w0+ bsin(2*pi*t/ period) m
i Study 1 |q 0/(2*pi*d *2[1/m* 2] expl-(lx-ne) 2= fy-ye) 42)/(2°°2))  Wim®
iE Results

6. Right-click on Geometry and left-click square and make side length 1 m. Click

build all button to create a square.

FT Moded Builder T = 0| # Sestings . Ml Model Libwany | S Baterial Broveer M@ =0
m 2-Dmgh froat)

o
£ Global Defintions I-E el el
| Modal fmedd) ~ Object Type
= Definition:
:."A'\-‘ Guomatiy 1 Typm |5I1|id =

L] Sguarel fsqI) .
| Form Union ffin | 7 Size

B Maberiaks Side length: [1 i
H Heat Transfer fhe)
V3 Mesh 1 = Pawsititn
E5 Shisdy 1
5 Hesults Blage: | Codner -
ES r.-l m
e 0 "

+ Raotation Angle

Rotation: 0 dea

F Layers
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7. Right-click on Materials and left-click on add Materials, add Steel AISI 4340.
Right-click on the “square” in Graphics and left-click on it to select. Make sure that “1”
is under the selection.

"IT Model Builder = = B [dis, [ Model Lit

4 V3 2-D.mph [root)
b B Global Definitions
4 (I Modell {mod1)
= Definitions
b A\ Geometry 1
4 %8 Materia
o o St“T"’. Material
» 8 sef| &8 Open Material Browser
> 3 Heat Tn d bl

£ Materials

b & Mesh1 a Dynamic Help F1
b s Studyl
B Results
ki B _."'"!I' "'Wm",_."hdl-mi.h'ﬂﬂdm ;.h""ﬂ_m TR S 'JE!-U. mT
e s |iM:Nateral o
b | S i
; ﬁn.r-u:':l l.i:m-.wmh:w- 1'_. 1
. :;:::Hﬂlﬂ ZEn L X (1]
g | e L
*E":m " aT
i Rrds
Nuwral “repaie nrl
oy '
f e e
T ey T I o
i "
* 1 1 1 1 1 1 1 1 1 1 1
= Bladrved Combrmis wsoa2ow 1 wr B2 0¥ @4 op: o0e Q¢ Dk 1 1 1 12 13
Elem=s ___ Tisfos i e =
|+ Fedl iy b e G 5L D E .
| o By Ao T el LR A a
| b ey " LA WL -
8. Right-click on Heat Transfer and left-click to add Heat Source. For General

source Q, Select User defined and Put “q”, which is the heat source defined from the
Variable.
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. Model Builder O || # Settings I rsodel Library | S0 PMaterial Browser | T i =

v 2-Demiph i -
W = Dampt i) " Heal Source
= Global Detimitions
4 I Modell {modl} Dortalas
E Definitions
Y Geometry 1 Selection: lManuaI- "'l
5 Paterials P
1 <
4 B Heel Transler fhe) | cjh
5" Heat Transferin I-u .
% ' Thermal Insulati o
Instial Values 1
Heat Source 1
i Mesh 1
5 Study 1
- gl Pesults = Heat Source
@ General source
| User defined '-'J
q wim?
Linear source
Q=g T

9. In Initials Values, make Temperature equal 0. We assume there is no temperature rise
in the beginning.

'l Model Buitder .~ ™ O |5 Settings Ul Model Library | S¥ Material Browser Qe
4 ¥8 2-D.mph {root) | - likiti |
= Initial WValues
E Global Definitions
4 ! Modell {modl) o s
= Defintions
A, Geometry 1 Selection: | All domain
HE Malerials 1 z
# 3 Heat Transfer (hi! &
57 Heat Transfer in I =
5 1 Thermal Insulati b
57 Initial Values 1
Heat Source 1
5 Mesh 1
&3 Study 1
igi Results - |nitial Values
Temperature
T 0fK] i
Surface radiosity
i I Wim®

10. Right-click on Mesh and select Mapped. Right-click on Mapped and select Edge
Groups. Please select domain and add each edge group. Under size, select Custom and
make Maximum element size equal 1/64 or any 1/2”N where N is an integer to compare

with EET 2 method in MATLAB. Then select build all button +! to build the mesh.
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"L Model Builder 7 T 03] M_I_I PAcdel Likrary | ®8 Materiol Browaer | o - S —
- WS 3 Dhrmiphs (roest) =
& = dGlobal Definitions L Edgerouns
" Parametsrs [ p—— m‘
4 7 rAodall feessdd)
= Dmefiniticns E
il ficniim il [ Manuat =
o S RSPl 1 b N
a B Hear Toanafes (daed My -
B Mt Trars e in >
B4 Therersal Insubuti
7 Irutial Walues 1
B Heat Source 1
- EBgH Mash L
e - Frar Falge G
- u h‘l‘?'\ﬂ-d 1 = o ‘h
(L Fge Groags - ;
Y Satastan: |Manusl =
S Stusdy 1 2 Vg, e
o T Rcauila Ty =
]
= Gacvasmeed Eulyger Gansugs L
Selactian: [Ranual =]
I Vg o=
Gy -
5~ 4
- Whired Eebgas Grougs
L B [ ) =
E T o=
ol HiFa
Geernstile 2t by heve: [Emes geomelry =]
[lement Sire
Y
21 Predefived [Hioera -|
W Cosam
= Homeil Size Paaimcles usl -
T Masmum e e—ect e
175 m
T Minirmare slement sive: sy
35F4 | m
T Mazmum ek grnch e
E) |
T Renshirien of runsues: nz} -
[E} |
T Beschirien of nanvs regans
i | 1.

11.

Under Study in Step, select Range button

Under Entry method, select

Number of values, start from 0 and stop at “period” which is defined in the parameters.
Put Number of values to be 31.
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12.

"7 Model Builder

'3 2-D.mph (root)
E Global Definitions
Pi Parameters
' Modell (modl)
£ Definitions
W\ Geometry 1
#E Materials
! Heat Transfer (ht)
@ Heat Transferin Solids 1

7

Thermal Insulation 1
Initial Values 1
. Heat Sourcel
EZ8 Mesh1
Es Studyl
[, =5tep 1: Time Dependent
[Fre Solver Configurations
{z1 Results

]
]
N

Under Time-Dependent Solver,

on = to compute.

14.

il Model Builder

- -

% 2-Domph (root)
= Global Definitions
P Pararneters
i Model1 {reod 1)
= Definitions
A Geometny 1
@ PAlaterals
# Heat Transfer (ht)
El_i . Heat Transfer in Solids 1
Thermal Insulation 1
Irtial Values 1
Heat Source 1
R Mesh 1
eE Study 1
[, =Step 1: Time Dependent
e Solver Configurations
I'E Solverl
29 Compile Equations: Tin
uvw Dependent Varnables 1
[ Timme-Dependent Solve
A Direct
Yy Advanced
=i Fully Coupled 1
[‘.ﬂ Drirect 1

]
&=
K

i=h Results

|[fi2 Settings . [l Model Library| § Material Browser] (& = 5

i, Time Dependent

~ Study Settings

Times:  range(0,(period[1/s]-0)/30,period[1/s]) s
Range ﬁ

Entry method: lNumbEf of values ']

Start: 0

Stop: period[1/<]

MNumber of values: 31 !
Function to apply to all values: |Nnne v] -

| Replace || Add || Cancel |

make Relative tolerance to be 1.0e-5. Left-click

i RS, I Model Litrary | B8 Material Browser | =]

A [« a
. Time-Dependent Solver

= General

Tirmes: range(l, (period[1/s]-0)/30, pericd[1l =

Relative tolerances 10-:-5

¥ Abszolute Tolerance

¢ Time Stepping

¥ Results While Solwing

F Output

F  Adhvanced

F Lo

Finally, under Results, select Surface under 2D Plot Group and select time to be 1
only, we should be able to see the result like Figure 25.
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[ © 2-D.mph - COMSOL Multiphysics

Fle Edit Options Help

088 @m@ MR

T Mode! Builder
¥ 2-Dimph (roof)
= Global Definitions
Pi Parameters
|| Model1 (mod1)
= Definitions
A Geometry 1
& Materials
3 Hest Transfer (ht)
% Heat Transferin Solids 1
%1 Thermal Insulation 1
Initial Values 1
Heat Source 1
% Mesh1
5 Study1
>5tep 1: Time Dependent
i Solver Configurations
[&] solver1

Compile Equations: Tin

v Dependent Variables1

.. Time-Dependent Solve

y Advanced
s Fully Coupled 1
[ Direct1

& Results

25 Derived Values
Tables

[ 20 Plot Group1
) Surface 1

[77 Report

14. Further data analysis can be done under Report, such as generate a movie and export
data and further compare results with MATLAB.

" RekEASH
Settings [l Model Library | 52 Material Browser| =
o &
= Surface
~ Data
Data set [solution1 BIE
Time: i B
~ Expression R
Expression:
T
Unit:
K -
| Description:

» Range
+ Coloring and Style
Coloring: | color table

Color table:

|Rainbow
7| Color legend
[l Wireframe

» Quality
» Inherit Style

=

Graphics

Surface: Temperature (K}
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0
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APPENDIX G. COMSOL CODE FOR 3-D SIMULATION

1. Open COMSOL 4.0a with 3D and hit =
'3 Model Wizard = O

!
&

Select Space Dimension

@ 3D
2D axisymmietric
2D
1D axisymmietric
1D
oD
2. In Heat Transfer, select Heat Transfer in Solids (ht) and right-click Add selected then
hit =
Add Physics

[ :\ Recenthy Used
r % AC/DC
 E]® Acoustics
r+ w*s Chemical Species Transport
& 1 Electrochemistry
» & Fluid Flow
- Heat Transfer
8 Heat Transfer in Solids (ht)
E® Heat Transfer in Fluids I{P{ gk Add Selected
& Heat Transfer in Porous .IL TraTrrTy
& Heat Transfer with Surface-to-Surface Radiation (ht)
m Bicheat Transfer (ht)
Surface-to-5Surface Radiation (rad)
- Joule Heating (jh)

» & Plasma

1+ fu Mathematics

4
Selected physics
| g Heat Transfer {ht)

3. In preset Studies, select Time Dependent and hit Finish #.,

+3 Model Wizard Model Library | =i
Select Study Type & = [

Studies

4 £5 Preset Studies

[/ Stationary

[y, Time Dependent
= Customn Studies

Selected physics
| a Heat Transfer (ht}
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4. Under Model Builder, right-click on Global Definitions and left-click to select
Parameters “input Parameters as following:
| =0 Settlngs 3 @-

4 'I.i 3D m&r.hm h l’.mc
E Global D;mrtu:-:: h Farametars
Fi Parameters T Taaetere
o W Model1 (medl) :
b Em Studyl | Marnie |Erprss.inn Value Drescription
5 T Results [d 0.02[m] 002 m
perind 1[s] 1s
! & 0.25]m)] 0.25m radiut of rotatin..y in « direction
b 0.25[m] 025 m radius of rotatin..y in y direction
) 0.3[m| 05m center of rotation in x direction
s 0.5[m] 05m center of rotation in y direction
0 30e3[W/m*2] 500000.0 W/m'
5. Right-click on Definitions and left-click to select Variables. Input Variables as
following: _
'f; ModelBuiider -~ = 5|11 Settings |-
18 3-D_mesh.mph {root) ~ ;
® okl Defrhions. || IO
V) Modef 1 {modl) Geometric Scope
= Definitions
2= Variables1 Geometric entity level: |Er1lir= madel -
\f+ Boundary Syste
@ Viewl + Varables
A, Geometry 1
#E Materials Mame | Expression Unit | Des.ien
¥ Heat Transter (ht) Xt sf)+a"cos(2"pi"tfperiod) m
2 Mesh1 ye yl+bsin(2"gi*t/ perind) m
&2 Studyl q 0/[2*pied 21 /m ™ 2]) "expi-(fx-uc) 2+ {y-ye) "2 2°d ) Wim®
iE Results
6. nght -click on Geometry and left-click “Work Plane” and input 1 in z coordinate.
uilder T 7 O][# Settings
e grriosTy 1ol (oot " Geumet;

= Global Definitions
4 &) Model 1 fmodl)
r = Definttions
4 A\ Geometry ] - Rl
¥, » Form H_J Build Al F&
FSE Materials i}
| Heat Trans|
58 Meshl *§0  Block
- oEm Studyl +g= Cone
r i@ Result $ :
- Resals - Cylinder

“ @ Sphere

More Primitives L3

= Geometry S5«

Import

*5 WorkPlane
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7. Right-click on Geometry under Wok Plane, select Circle. We need to build up two
circles. One has radius 0.32m and the other one has radius 0.18m, both are centered at
x=0.5m and y=0.5m. Right-click on Geometry and add Extrude, select Reverse direction
and input distance to be 0.05m. Right-click on Geometry and add Block with Width,

Depth and Height all equal 1.
a M Geometryl
4 = > Work Plane 1 (wpl)
A Geometry,

KA view 2 M Build Al F&
¥4 > Form Unior
. | *[& Import
#E Materials P

@ Heat Transfer (ht] () Circle

G Mesh 1 *¢c> Ellipse
:-'-'-. Q-i_-n.-|~.-1
First circle:

1% Untitled.mph (root)
E Global Definitions

4 &4 Modell (modi)

= Definitions

(4 Circle

- Object Type

a A Geometry 1 Type: |5-::rl.id
a ';:J > Work Plane 1 fuwpl)
a 7 Geometry - Skze
Ll Cirele (c2) Radius: | 032

4 view 2
#8, > Form Union (firn)
&l Materials
i Heat Transfer (hi)
=3 Mezh 1

- Poxition

Base: | Center

- G-S
== Study 1
@i Results ¥ 2=
Second circle:
a U8 Untitted.miph (root) 3 Circle

E Global Defimtions
4 Wi Modell {rrodI)
e 1 Definitions
a _&‘5-._ Geometry 1
- ..;:‘ = Work Plane 1 {ivpl)
# 5 Geometry
) Circle 1 {c1)

1 Circle 2 (e

- Object Type

Type: [ Solid

- Sire

Radius: 018

ELA wiew 2  Position
w4 = Form Unicon (fir)
5 patenals Bace: [Soning
% Heat Transfer (ki) = 0.5
e Meshl
&S Studyl ¥ i

Extrude:
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& Model I {rmodd)
7= Definitions
A Geometry 1
=F wWork Plane 1 fiwpl)
Extruce 1 (extl)
&, = Form Union (fin)
i paatenals
8 Heat Transfer (ki)
BEE Mesh 1
=2 Study 1
Fesults

Add a Block:

Il Model Builder

Work plane:

Input objects:
_ Builed Breceding State
|E| Keep input objects

=4l Eeep cross-sectional faces

= Distances from Work Plane

4

7] Reverse direction

(434 Settings .

S mappendix gomph rooe)
= Global Detimiticons
i Model 1 fraad 1}
= Defintions
A Geornelny 1

Extrude 1 foxdd]}
Block 1 (bikL)

R Materials
g Heat Transfer (i)
SR Mesh 1

e Study 1

=1 Reswults

L= work Plan=1 {wgl)

B, = Foren Union (fod

I Block
- ¥hgers @ Typeer

- Pois
Aty (R
= ﬂ—
¥ o
k1 b

The geometry should be built like this:
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7. Right-click on Materials and left-click on add Materials. Add Steel AISI 4340.
Right-click on the geometry in Graphics and left-click on it to select. Make sure that all
the portions are selected. “ 17, “2” and “3” should be under the selection.

1? MMadel Builder
& VW 30 mechomph et
= Glabal Definiticos
4 W Nadul L fead 1)
- E Definitiens
4, Geometny 1
& &b Matznalz
1 E Sreal AISI40
} Hest Tranefer (hr)
W Mk 1
0 Skucly 1

e W ) [T

[| & Material

Geametric Soope

Arometic srtity level: | Domain

Selechars all domens

1
2
3

a (5 Results
== Data Hets
28 Darreed Valuss
L Tahbles
[® 30 Plak Group 1
& =0 Plok Greap 2
%, Probe 10 Plol Giowp 3
a FF] Repoit

¥ Material Frogertes
= Materlal Lontents

[riaree [vaine  [uee |

= Playerl | Hrogerty

B anirnetion 1 = |leat capacity 8., 5tank pressune Cp LR R N R | o i
#  Densty rha TEHL ] kgD
w Themrnal conductmby k 44.5,,.7K}] WILKR

8. Right-click on Heat Transfer and left-click to add Boundary Heat Source. For
Boundary heat source Qy, enter “q”, which is the heat source defined from the Variable.
Right click on selection 9 on Graphics and left click on it to select.

% 3-D_mesh.mph (root)
E Global Definitions
4 U} Modell (modl)
= Defintions
» N Geometry 1
28 Materials
4§ Heat Transfer (ht)
S Heat Transfer in Solids 1
5 | Thermal Insulation 1
57 Initial Values 1
Boundary Heat Source 1
& Mesh1
&= Studyl
4 5 Results
% Data Sets
- B2 Derived Values
EH Tables

Boundary Heat

Boundaries
Selection: | Manual
9

= Boundary Heat Source

Boundary heat source:

Qs g
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i Settings

B ] Gt

't Boundary Heat Source

A ®-aaf rBld-z=|% on@BE

Eoundaries

Edechion wﬂ.

]

2 T

Rruindary hmat snure

w
ERER

G g

9. In Initials Values, make Temperature equal 0. We assume there is no temperature rise

in the beginning.
4 § Heat Transfer (he)
£ Heat Transfer in Sofids 1
% | Thermal Insulation 1
& InisalValues
|| Boundary Heat Source 1
p B Mesh1
boiw Studyl
a {5l Results
P E Data Sets
[ 25 Derved Values
p E2 Tables
p % 30 Plot Group L
i+ {51 30 Plot Group 2
i+ [ Probe 10 Plot Group 3

L B F

: & =
= 4

= Initial Values

Temperature

T O[K] K

Surface radiceity:

J o it

10. Right-click on Mesh and select Free Tetrahedral, repeat this process three times.

Il

b 9 Mesh1
b s Studyl
4 i Results

v HE Data

f] Build Al

* 2  Free Tetrahedral
|+
p L= i@ Swept

v BE Table *= Boundary Layers

» {@ 3DPI

More Operations

First Free Tetrahedral mesh: selection 2 is picked and makes the predefined Element Size

to be Extremely Fine:
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Second Free Tetrahedral mesh: selection 3 is picked and makes thenfaredeﬁned Element
Size to be Extremely Coarse:

& (e Tebanars
a W Hzdd] it
= Mebriwre

& M Sezapl
1 12ME a2
i, Fosbe 10 Bt G 3
a7 bzt
15 Plagert
B At

Geempiric boane

G 0tE et |Conn

¥ lawenl S fammsion

]
Lelmcian ||.|-qi -r]
1 Yy, &
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&
Bl S
@ Fuedefoed | sty smans. 2
% Cariam

1

Third Free Tetrahedral mesh: selection 1 is picked and makes the bredefined Element
Size to be Extremely Coarse.

Meckllisdn Sanidlali T

B 01 7] gt

%3 Dmahunph !
& Rakd Tefagon
i Hadd] T
« = Delwilirn
A, omsry ]
& Hubwuk
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# 5 Hehl
Y
& Tebhuaz
4 fb s Dl
&l biewrmi
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& il
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a [ et
bl Hapnd
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|
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1| to build the mesh.
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11. Under Study in Step, select Range button , under Entry method, select
Number of values, start from 0 and stop at 1. Put Number of values to be 51.

% 3-D_mesh.mph (roct) . :
& Global Definitions jEsTimB Dapardent

W Model 1 fmadl) | e Study Settings
== Studyl | .
[, »Stepl: Time Dependent | Times: range(0,1,/50.1) § EI
[P Sehver Configurations 4 .
Ig Results Range ﬁ
2 [ata Sets E-n e P 'l-N P ]
LB Derived Values Y (e e T
[ Tables Start: g
(% 30 Plot Growp 1
(& 30 Plot Group 2 D :
[%, Probs 1D Plot Groug 3 MNumber of values: al b |
[7 Report )
= i ‘| -
=) Playerl Function b apgly to all values: lNl:ln-c | T |
Animation 1
e [ Replace I Bdd | | Cancel |

12. Under Time-Dependent Solver, make Relative tolerance to be 1.0e-5. Left-click

on = to compute. This 3D problem may take couple hours to solve, in order to see a
quick solution, we can make all meshes to be extremely coarse.

I Madel Busides ||| Settings o om | ~=H

% 3-D_mesh.mph (oo
= Global Definiticns
al kMlodell frodd)

[t Time-Depandent Saolver

= [aendtad
5 Shudy 1 )
[ = StepT: Tunme Deperident Turre=z rarigeiD 1001 5 | (] |
T, Sofver Configurstions
s Felatre llesance: | 1e-%
] Sobeerl

ot Compile Equations: Time Deperdant
arw Dependent Yariables 1

r Absolote Tolerance

| Tme-Dependent Sobeer 1 b Time Stepping
§ Dirwet
l': A:;u,m. B F Resulis While Sodving
= Fully Loupled 1 LI IR T
[ Terative 1
Vgl Results b A el
i Data Sets

b Lisg
B Dermved Yalues

2. Finally, under Results, select Surface under 3D Plot Group and select time to be 1
only, we should be able to see the result like Figure 28.
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8 3.0 meshngh o r | I
Lo = 0 B
e & A0 Flot Group a
[T LR = bi
w0 Sy | o
W fagh =T Sohamal -l b
T Ut s
1'F: Mol Yot Tt 1 -
T (k)
15 22 Pt g | - Pt S
T Soecnl
T 12 P G 7 o fedorrat -
. Puahe IT1 PR Fump ] — L
¥ Teke ¢ bru LDy paed-ld
%] R,
< Mgl ¥ ot et 1l o i
B Arorwmon L I;& '
Frben, [reee " st
o Pt Wl Gt ar
2 M




14. Further data analysis can be done under Report, such as generate a movie and export

data. We can add a Domain Probe Point under Definition to analyze the temperature rise
as a function of time at a fixed point:
1 b

i = [Ty
& 33w ool
s eyl A Doman Ford Frobe
b Fwvdm F T
a M 1 il )
a & Iefasent sootyrdwd H 5
= habal
o Dt bl * n =
(& Bandeg S )| Smmbed 035 1 | "
7 srp e doed Boendry

ElR T deaw’ 3 Bow=|BAG R4 b O o]

- P st

L=
e

Click on Probe 1D Plot Group under Results, we can plot temperature as a function of

time at the selected point.
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